Lecture 1

Algebras, σ -algebras and semi-algebras

MATH 501, FALL 2023

September 7, 2023

Algebras

Let X be a nonempty set, and let $\mathcal{P}(X)$ be its power set.

Algebra

An **algebra** of sets on X is a collection $A \subseteq \mathcal{P}(X)$ that satisfies

- ② If $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$ (closed under complements).
- **3** If $E_1, E_2, \ldots, E_N \in \mathcal{A}$, then $\bigcup_{j=1}^N E_j \in \mathcal{A}$ (closed under finite unions).

Example

$$\mathcal{A} = \{\emptyset, X, E, E^c\}$$
 is an algebra.

σ -Algebras

σ -Algebra

A σ -algebra of sets on X is a collection $\mathcal{A} \subseteq \mathcal{P}(X)$ that satisfies

- ② If $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$, (closed under complements).
- **3** If $E_1, E_2, \ldots \in A$, then $\bigcup_{j=1}^{\infty} E_j \in A$, (closed under infinite unions).

The pair (X, A) is then called a measurable space.

Examples

- If X is any set then $\{\emptyset, X\}$ and $\mathcal{P}(X)$ are σ -algebras.
- If X is uncountable, then

$$A = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable}\}$$

is σ -algebra of countable and co-countable sets.

Remarks

- Algebras (resp. σ -algebras) are also closed under finite (resp. countable) intersections, since $\left(\bigcup_{j=1}^{\infty} E_j\right)^c = \bigcap_{j=1}^{\infty} E_j^c$.
- If \mathcal{A} is an algebra, then $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$. Take $E \in \mathcal{A} \neq \emptyset$, then $E^c \in \mathcal{A}$, and consequently $\emptyset = E \cap E^c \in \mathcal{A}$ and $X = E \cup E^c \in \mathcal{A}$.
- An algebra \mathcal{A} is a σ -algebra provided it is closed under countable disjoint unions. Indeed, let $F_1 = E_1$ and

$$F_k = E_k \setminus \left(\bigcup_{j=1}^{k-1} E_j\right) = E_k \cap \left(\bigcup_{j=1}^{k-1} E_j\right)^c$$
 for any $k \in \mathbb{N}$.

Then the F_k 's belong to A and are disjoint, and

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} F_j.$$

• The intersection of any family of σ -algebras on X is again a σ -algebra.

σ -algebras generated by ${\cal E}$

σ -algebra generated by ${\mathcal E}$

If $\mathcal{E} \subseteq \mathcal{P}(X)$, then

$$\sigma(\mathcal{E}) = \bigcap_{\substack{\mathcal{A} \supseteq \mathcal{E} \ \mathcal{A} \text{ is a } \sigma\text{-algebra}}} \mathcal{A}$$

is the smallest σ -algebra containing \mathcal{E} .

• $\sigma(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} and is unique.

Example

The family $\mathcal{E} = \{\{x\} : x \in X\}$ generates

$$\sigma(\mathcal{E}) = \{ E \subseteq X : E \text{ is countable or } E^c \text{ is countable} \}.$$

Lemma

Lemma

If $\mathcal{E} \subseteq \sigma(\mathcal{F})$, then $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{F})$.

Proof.

We know that

$$\sigma(\mathcal{E}) = \bigcap_{\substack{\mathcal{A} \supseteq \mathcal{E} \\ \mathcal{A} \text{ is a } \sigma\text{-algebra}}} \mathcal{A} \subseteq \sigma(\mathcal{F})$$

It is also easy to see that $\sigma(\mathcal{E}) = \sigma(\sigma(\mathcal{E}))$. Indeed,

$$\sigma(\sigma(\mathcal{E})) = \bigcap_{\substack{\mathcal{A} \supseteq \sigma(\mathcal{E}) \\ \mathcal{A} \text{ is a } \sigma\text{-algebra}}} \mathcal{A} \subseteq \sigma(\mathcal{E}) \subseteq \sigma(\sigma(\mathcal{E})).$$

Borel sets and F_{σ} and G_{δ} sets

Borel sets

If X is any metric space, or more generally any topological space, the σ -algebra generated by the family of open sets in X (or, equivalently, by the family of closed sets in X) is called the **Borel** σ -algebra on X and is denoted by

$$Bor(X) \subseteq \mathcal{P}(X)$$
.

Its members are called Borel sets.

F_{σ} and G_{δ} sets

- **①** A countable intersection of open sets is called a G_{δ} set.
- **2** A countable union of closed sets is called an F_{σ} set.
- **3** A countable union of G_{δ} set is called a $G_{\delta\sigma}$ set.
- **4** A countable intersection of F_{σ} sets is called an $F_{\sigma\delta}$ sets.

Proposition

 $Bor(\mathbb{R})$ is generated by each of the following:

- **1** the open intervals: $\mathcal{E}_1 = \{(a, b) : a < b\}$;
- ② the closed intervals: $\mathcal{E}_2 = \{[a, b] : a < b\}$;
- the half-open intervals:

$$\mathcal{E}_3 = \{(a, b] : a < b\}$$
 or $\mathcal{E}_4 = \{[a, b) : a < b\};$

the open rays:

$$\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\} \quad \text{ or } \quad \mathcal{E}_6 = \{(-\infty, a) : a \in \mathbb{R}\};$$

the closed rays:

$$\mathcal{E}_7 = \{[a, \infty) : a \in \mathbb{R}\} \quad \text{ or } \quad \mathcal{E}_8 = \{(-\infty, a] : a \in \mathbb{R}\}.$$

Product σ -algebra

Product σ -algebra

Let $(X_{\alpha})_{\alpha \in A}$ be an indexed collection of nonempty sets, $X = \prod_{\alpha \in A} X_{\alpha}$, and $\pi_{\alpha} : X \to X_{\alpha}$ the coordinate maps. If \mathcal{A}_{α} is a σ -algebra on X_{α} for each $\alpha \in A$, **the product** σ -algebra on X is the σ -algebra generated by

$$\{\pi_{\alpha}^{-1}[E_{\alpha}]: E_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in A\}.$$

We denote this σ -algebra by $\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}$. In other words,

$$\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha} = \sigma \left(\left\{ \pi_{\alpha}^{-1} [E_{\alpha}] : E_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in A \right\} \right).$$

If $A = \{1, ..., n\}$, we write $A_1 \otimes A_2 \otimes ... \otimes A_n$.

Proposition

If A is countable, then $\bigotimes_{\alpha\in A}\mathcal{A}_{\alpha}$ is the σ -algebra generated by

$$\big\{\prod_{\alpha\in A}E_\alpha:E_\alpha\in\mathcal{A}_\alpha\big\}.$$

Proof. Let

$$\mathcal{E} = \{ \pi_{\alpha}^{-1} [E_{\alpha}] : E_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in A \},\$$

and

$$\mathcal{F} = \big\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{A}_{\alpha} \big\}.$$

By the definition $\sigma(\mathcal{E}) = \bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}$.

• We first show that $\mathcal{E} \subseteq \mathcal{F} \subseteq \sigma(\mathcal{F})$, this will imply $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{F})$.

Indeed, if $\pi_{\alpha}^{-1}[E_{\alpha}] \in \mathcal{E}$ for some $\alpha \in A$ and $E_{\alpha} \in \mathcal{A}_{\alpha}$, then

$$\pi_{\alpha}^{-1}[E_{\alpha}] = \prod_{\beta \in A} E_{\beta},$$

where $E_{\beta} = X_{\beta}$ for $\alpha \neq \beta$. Thus $\pi_{\alpha}^{-1}[E_{\alpha}] \in \mathcal{F}$ as desired.

• We now show that $\sigma(\mathcal{F}) \subseteq \sigma(\mathcal{E})$. Is suffices to prove that $\mathcal{F} \subseteq \sigma(\mathcal{E})$. Note that

$$\mathcal{F} \ni \prod_{\alpha \in A} \mathsf{E}_{\alpha} = \bigcap_{\alpha \in A} \pi_{\alpha}^{-1}[\mathsf{E}_{\alpha}] \in \sigma(\mathcal{E}).$$

The fact that A is countable, is essential in the argument.

Proposition

Suppose that $A_{\alpha} = \sigma(\mathcal{E}_{\alpha})$ for any $\alpha \in A$. Then $\bigotimes_{\alpha \in A} A_{\alpha}$ is generated by

$$\mathcal{F}_1 = \{ \pi_{\alpha}^{-1}[E_{\alpha}] : E_{\alpha} \in \mathcal{E}_{\alpha}, \ \alpha \in A \}.$$

If A is countable and $X_{\alpha} \in \mathcal{E}_{\alpha}$ for any $\alpha \in A$, then $\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}$ is generated by

$$\mathcal{F}_2 = \big\{ \prod_{\alpha \in A} \mathcal{E}_\alpha : \mathcal{E}_\alpha \in \mathcal{E}_\alpha \big\}.$$

Proof. We have

$$\sigma(\mathcal{F}_1) \subseteq \sigma\left(\left\{\pi_{\alpha}^{-1}[E_{\alpha}] : E_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in A\right\}\right) = \bigotimes_{\alpha \in A} \mathcal{A}_{\alpha}.$$

We have to prove that $\bigotimes_{\alpha \in A} A_{\alpha} \subseteq \sigma(\mathcal{F}_1)$.

• For each $\alpha \in A$, consider the collection

$$\mathcal{G}_{\alpha} = \{ E \subseteq X_{\alpha} : \pi_{\alpha}^{-1}[E] \in \sigma(\mathcal{F}_1) \}.$$

• By the definition of \mathcal{F}_1 we have $\mathcal{E}_{\alpha} \subseteq \mathcal{G}_{\alpha}$, since

$$\pi_{\alpha}^{-1}[E] \in \sigma(\mathcal{F}_1)$$

for all $E \in \mathcal{E}_{\alpha}$ and $\alpha \in A$.

- One can easily show that G_{α} is a σ -algebra on X_{α} .
- Hence \mathcal{G}_{α} is a σ -algebra containing \mathcal{E}_{α} thus $\mathcal{A}_{\alpha} = \sigma(\mathcal{E}_{\alpha}) \subseteq \mathcal{G}_{\alpha}$ for all $\alpha \in \mathcal{A}$, so $\{\pi_{\alpha}^{-1}[\mathcal{E}_{\alpha}] : \mathcal{E}_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in \mathcal{A}\} \subseteq \sigma(\mathcal{F}_{1})$ and consequently

$$\bigotimes_{\alpha \in A} \mathcal{A}_{\alpha} = \sigma \left(\left\{ \pi_{\alpha}^{-1} [E_{\alpha}] : E_{\alpha} \in \mathcal{A}_{\alpha}, \ \alpha \in A \right\} \right) \subseteq \sigma(\mathcal{F}_{1})$$

as claimed.

Proposition

Let X_1, \ldots, X_N be metric spaces and let $X = \prod_{j=1}^N X_j$ be equipped with the product metric. Then

$$\bigotimes_{j=1}^{N} \mathrm{Bor}(X_{j}) \subseteq \mathrm{Bor}(X).$$

If the X_i 's are separable, then

$$\bigotimes_{i=1}^{N} \operatorname{Bor}(X_{j}) = \operatorname{Bor}(X).$$

Semi-algebras

Semi-algebras

A **semi-algebra** of sets on X is a collection $\mathcal{I} \subseteq \mathcal{P}(X)$ such that

- $\emptyset \in \mathcal{I}$,
- ② if $E, F \in \mathcal{I}$, then $E \cap F \in \mathcal{I}$,
- **3** if $E \in \mathcal{I}$, then E^c is a finite disjoint union of members of \mathcal{I} .

Examples

- A family containing \emptyset , $\mathbb R$ and all closed-open intervals [a,b) with $-\infty \le a < b \le \infty$ is a semi-algebra.
- If we consider two measurable spaces (X, A) and (Y, B) then the set $A \times B = \{A \times B : A \in A \text{ and } B \in B\}$ is a semi-algebra.

Proposition

If $\mathcal I$ is a semi-algebra, the collection $\mathcal A$ of finite disjoint unions of members of $\mathcal I$ is an algebra.

Proof. If $A, B \in \mathcal{A}$ we first show that $A \cup B \in \mathcal{A}$. Note that

$$B^c = \bigcup_{j=1}^J C_j,$$

where $C_i \in \mathcal{I}$ are disjoint. Then

$$A \setminus B = \bigcup_{j=1}^J A \cap C_j \in \mathcal{A},$$

thus $A \cup B = (A \setminus B) \cup B \in A$.

• By induction one can easily show that if $A_1, A_2, \ldots, A_n \in \mathcal{A}$, then

$$\bigcup_{j=1}^n A_j \in \mathcal{A}.$$

• We now show that if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$. If $A \in \mathcal{A}$, then it can be represented as a disjoint union of the elements from \mathcal{I} , i.e.

$$A = A_1 \cup A_2 \cup \ldots \cup A_n$$

where $A_1, A_2, \ldots, A_n \in \mathcal{I}$ and

$$A_m^c = \bigcup_{j=1}^{J_m} B_m^j$$

for every m = 1, 2, ..., n with disjoint members $B_m^1, ..., B_m^{J_m}$ of \mathcal{I} .

Finally, one sees that

$$A^{c} = \left(\bigcup_{j=1}^{n} A_{j}\right)^{c}$$

$$= \bigcap_{j=1}^{n} A_{j}^{c}$$

$$= \bigcap_{j=1}^{n} \bigcup_{m=1}^{J_{m}} B_{m}^{j}$$

$$= \bigcup_{j=1}^{J_{1}} \bigcup_{j=1}^{J_{2}} \cdots \bigcup_{j=1}^{J_{m}} \left(B_{1}^{j_{1}} \cap B_{2}^{j_{2}} \cap \ldots \cap B_{n}^{j_{n}}\right),$$

where the last sum is disjoint. Thus A is an algebra as claimed.