Lecture 7

Maximum principle and open mapping theorem First glimpse at complex logarithms and winding number

MATH 503, FALL 2025

September 25, 2025

Orthogonality relations

Theorem

lf

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n \quad \text{for} \quad z \in D(a; R)$$
 (*)

and if 0 < r < R, then

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a + re^{i\theta})|^2 d\theta$$
 (**)

Proof: We have

$$f(a+re^{i\theta})=\sum_{n=0}^{\infty}c_{n}r^{n}e^{in\theta}.$$

For r < R, the series converges uniformly on $[-\pi, \pi]$.

Orthogonality relations

Since

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-in\theta} d\theta = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n \in \mathbb{Z} \setminus \{0\}, \end{cases}$$

we conclude that

$$c_n r^n = rac{1}{2\pi} \int_{-\pi}^{\pi} f(a + r e^{i\theta}) e^{-in\theta} d\theta,$$

and

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(a + re^{i\theta}\right) \right|^2 d\theta = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_n \overline{c_m} r^{n+m} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)\theta} d\theta$$
$$= \sum_{n=0}^{\infty} |c_n|^2 r^{2n}.$$

• This completes the proof.

Definition

Let f be defined on Ω and $a \in \Omega$. Then |f| has a **local maximum** at a if there exists $\delta > 0$ such that $D(a, \delta) \subseteq \Omega$ and $|f(a)| \ge |f(z)|$ for every $z \in D(a, \delta)$. Further, we say that |f| has no local maximum in Ω if |f| does not have local maximum at every point of Ω . Similarly, we define a **local minimum**.

Theorem

Suppose that Ω is a region and $f \in H(\Omega)$.

- (a) Then |f| has no local maximum at any point of Ω , unless f is constant.
- (b) Moreover, if the closure of Ω is compact and f is continuous on $\overline{\Omega}$, then

$$\sup_{z\in\Omega}|f(z)|\leq\sup_{z\in\partial\Omega}|f(z)|.$$

Proof: We now prove part (a). Suppose that |f| attains a local maximum at $a \in \Omega$, then

$$|f(z)| \le |f(a)|$$
 for all $z \in D(a, \delta)$

for some $\delta > 0$.

• If $z \in D(a, \delta)$, then it can be represented as

$$z = a + re^{i\theta}$$

for some $r \in [0, \delta)$ and $\theta \in [-\pi, \pi]$. Hence

$$|f(a+re^{i\theta})| \le |f(a)|$$
 for all $r \in [0,\delta)$ and $\theta \in [-\pi,\pi]$.

Since

$$f(z) = \sum_{n \ge 0} c_n (z - a)^n$$
 for $z \in D(a, \delta)$.

By the previous theorem it follows that

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a + re^{i\theta})|^2 d\theta \le |f(a)|^2 = |c_0|^2.$$

Hence

$$\sum_{n=1}^{\infty} |c_n|^2 r^{2n} \leq 0$$

and consequently $c_1 = c_2 = c_3 = \cdots = 0$, which implies that f(z) = f(a) in D(a; r).

• Since Ω is connected, then f must be constant in Ω .

We now prove part (b). There is nothing to prove if f is constant. Suppose that f is non-constant in Ω .

- Since f is continuous on $\overline{\Omega}$, which is compact, then it attains its maximum in $\overline{\Omega}$.
- Since f is non-constant this maximum must be attained in $\partial\Omega$, otherwise f would be constant by part (a).

(MATH 503, FALL 2025) Lecture 7 September 25, 2025

Corollary (Prove it!)

Suppose that Ω is a region, $f \in H(\Omega)$, and $\overline{D}(a; r) \subseteq \Omega$.

Then

$$|f(a)| \le \max_{\theta \in [-\pi,\pi]} |f(a+re^{i\theta})|.$$
 (*)

Equality occurs in (*) if and only if f is constant in Ω . Consequently, |f| has no local maximum at any point of Ω , unless f is constant.

Moreover, we have

$$|f(a)| \ge \min_{\theta \in [-\pi,\pi]} |f(a + re^{i\theta})|$$

if f has no zero in D(a; r).

Auxiliary lemma

Lemma

If $f \in H(\Omega)$ and g is defined in $\Omega \times \Omega$ by

$$g(z,w) = \begin{cases} \frac{f(z)-f(w)}{z-w} & \text{if } w \neq z, \\ f'(z) & \text{if } w = z, \end{cases}$$

then g is continuous in $\Omega \times \Omega$.

Proof: The only points $(z, w) \in \Omega \times \Omega$ at which the continuity of g is possibly in doubt have z = w.

Auxiliary lemma

• Fix $a \in \Omega$, and $\varepsilon > 0$. There exists r > 0 such that $D(a; r) \subseteq \Omega$ and

$$\left|f'(\zeta)-f'(a)\right|<\varepsilon$$

for all $\zeta \in D(a; r)$.

• If z and w are in D(a; r) and if

$$\zeta(t) = (1-t)z + tw,$$

then $\zeta(t) \in D(a; r)$ for $0 \le t \le 1$, and

$$g(z, w) - g(a, a) = \int_0^1 [f'(\zeta(t)) - f'(a)] dt.$$

• The absolute value of the integrand is $< \varepsilon$, for every $t \in [0,1]$. Thus $|g(z,w) - g(a,a)| < \varepsilon$. This proves that g is continuous at (a,a).

Holomorphic functions with nonvanishing derivatives

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open. Suppose that $\varphi \in H(\Omega)$, and $\varphi'(z_0) \neq 0$ for some $z_0 \in \Omega$. Then Ω contains a neighborhood V of z_0 such that

- (a) φ is one-to-one in V;
- (b) $W = \varphi(V)$ is an open set;
- (c) if $\psi: W \to V$ is defined by $\psi(\varphi(z)) = z$, then $\psi \in H(W)$.

Thus $\varphi: V \to W$ has a holomorphic inverse.

Proof: By the previous lemma applied to φ in place of f, we conclude that Ω contains a neighborhood V of z_0 such that

$$\left|\varphi\left(z_{1}\right)-\varphi\left(z_{2}\right)\right|\geq\frac{1}{2}\left|\varphi'\left(z_{0}\right)\right|\left|z_{1}-z_{2}\right|\tag{1}$$

if $z_1 \in V$ and $z_2 \in V$. Thus (a) holds, and $\varphi'(z) \neq 0$ for $z \in V$.

Holomorphic function with nonvanishing derivatives

- To prove (b), pick $a \in V$ and choose r > 0 so that $\overline{D}(a, r) \subseteq V$.
- By inequality (1) there exists c > 0 such that

$$\left| \varphi(\mathbf{a} + r\mathbf{e}^{i\theta}) - \varphi(\mathbf{a}) \right| > 2c \quad \text{ for } \quad \theta \in [-\pi, \pi].$$
 (2)

• If $\lambda \in D(\varphi(a); c)$, then $|\lambda - \varphi(a)| < c$, hence (2) implies

$$\min_{\theta \in [-\pi,\pi]} \left| \lambda - \varphi(\mathbf{a} + r\mathbf{e}^{i\theta}) \right| > c > |\lambda - \varphi(\mathbf{a})|. \tag{3}$$

- By the previous corollary $\lambda \varphi$ must therefore have a zero in D(a; r).
- Thus $\lambda = \varphi(z)$ for some $z \in D(a; r) \subseteq V$.
- This proves that $D(\varphi(a); c) \subseteq \varphi(V)$.
- Hence $\varphi(V)$ is open, since a was an arbitrary point of V.

Holomorphic function with nonvanishing derivatives

- To prove (c), fix $w_1 \in W$.
- Then $\varphi(z_1) = w_1$ for a unique $z_1 \in V$ by property (b).
- If $w \in W$ and $\psi(w) = z \in V$, we have

$$\frac{\psi(w)-\psi(w_1)}{w-w_1}=\frac{z-z_1}{\varphi(z)-\varphi(z_1)}.$$

- By inequality (1) we deduce that $z \to z_1$ when $w \to w_1$.
- Moreover, $\phi'(z) \neq 0$ if $z \in V$, also by (1).
- Hence

$$\psi'(w_1) = \lim_{w \to w_1} \frac{\psi(w) - \psi(w_1)}{w - w_1} = \lim_{z \to z_1} \frac{z - z_1}{\varphi(z) - \varphi(z_1)} = 1/\varphi'(z_1).$$

• Thus $\psi \in H(W)$ as desired.

Open mapping theorem

Definition

For $m \in \mathbb{N}$, we denote the m^{th} -power function $z \mapsto z^m$ by π_m .

• Each $w \neq 0$ is $\pi_m(z)$ for precisely m distinct values of z: If $w = re^{i\theta}$ for some r > 0, then

$$\pi_m(z) = w \iff z = r^{1/m} e^{i(\theta + 2k\pi)/m} \text{ for } k = 1, \dots, m.$$

- Note also that each π_m is an open mapping: If V is open and does not contain 0, then $\pi_m(V)$ is open by the previous theorem. On the other hand, $\pi_m(D(0,r)) = D(0,r^m)$.
- Compositions of open mappings are clearly open. In particular, $\pi_m \circ \varphi$ is open, by the previous theorem, if φ' has no zero.

Open mapping theorem

Theorem

Suppose $\Omega \subseteq \mathbb{C}$ is open, $f \in H(\Omega)$ and f is not constant, $z_0 \in \Omega$, and $w_0 = f(z_0)$. Let m be the order of the zero which the function $f - w_0$ has at z_0 . Then there exists a neighborhood $V \subseteq \Omega$ of z_0 , and there exists $\varphi \in H(V)$, such that

- (a) $f(z) = w_0 + [\varphi(z)]^m$ for all $z \in V$.
- (b) Moreover, φ' has no zero in V and φ is an invertible mapping of V onto a disc D(0; r).

Remark

Thus $f-w_0=\pi_m\circ\varphi$ in V. It follows that f is an exactly m-to-1 mapping of $V\setminus\{z_0\}$ onto $D'(w_0;r^m)$, and that each $w_0\in f(\Omega)$ is an interior point of $f(\Omega)$. Hence $f(\Omega)$ is open.

Open mapping theorem

Proof: Without loss of generality we may assume that Ω is a convex neighborhood of z_0 which is so small that $f(z) \neq w_0$ if $z \in \Omega \setminus \{z_0\}$.

Then

$$f(z) - w_0 = (z - z_0)^m g(z)$$
 for $z \in \Omega$

for some $g \in H(\Omega)$ which has no zero in Ω . Hence $g'/g \in H(\Omega)$.

- By the Cauchy theorem g'/g = h' for some $h \in H(\Omega)$.
- The derivative of $g \cdot \exp(-h)$ is 0 in Ω .
- If h is modified by the addition of a suitable constant, it follows that $g = \exp(h)$. Define

$$\varphi(z) = (z - z_0) \exp \frac{h(z)}{m}$$
 for $z \in \Omega$.

- Then (a) holds, for all $z \in \Omega$.
- Also, $\varphi(z_0) = 0$ and $\varphi'(z_0) \neq 0$. The existence of an open set V that satisfies (b) follows now from the previous theorem.

Inverse mapping theorem

Theorem

Suppose that $\Omega \subseteq \mathbb{C}$ is open, $f \in H(\Omega)$, and f is one-to-one in Ω . Then $f'(z) \neq 0$ for every $z \in \Omega$, and the inverse of f is holomorphic.

Proof: If $f'(z_0)$ were 0 for some $z_0 \in \Omega$, the hypotheses of the previous theorem would hold with some m > 1, so that f would be m-to-1 in some deleted neighborhood of z_0 , which is impossible, since f is one-to-one. Thus $f'(z) \neq 0$ for all $z \in \Omega$. Now apply part (c) of the last but one theorem. This completes the proof of the theorem.

Remark

We observe that the converse of the inverse mapping theorem is false: If $f(z) = e^z$, then $f'(z) \neq 0$ for every $z \in \mathbb{C}$, but f is not one-to-one in the whole complex plane.

Complex logarithms and arguments

• The exponential function $S_{\alpha} \ni z \mapsto e^z \in \mathbb{C} \setminus \{0\}$ when restricted to the strip $S_{\alpha} = \{x + iy : \alpha \le y < \alpha + 2\pi\}$ is a one-to-one analytic map of this strip onto $\mathbb{C} \setminus \{0\}$ the nonzero complex numbers.

Definition

- We take \log_{α} to be the **inverse** of the exponential function restricted to the strip $S_{\alpha} = \{x + iy : \alpha \le y < \alpha + 2\pi\}.$
- We define arg_{α} to the **imaginary part** of log_{α} .
- Consequently, $\log_{\alpha}(\exp z) = z$ for each $z \in S_{\alpha}$, and $\exp(\log_{\alpha} z) = z$ for all $z \in \mathbb{C} \setminus \{0\}$.

Definition

- The **principal branches** of the logarithm and argument functions, to be denoted by Log and Arg, are obtained by taking $\alpha = -\pi$.
- Thus, $Log = log_{-\pi}$ and $Arg = arg_{-\pi}$.

Complex logarithms and arguments

Theorem

(a) If $z \neq 0$, then $\log_{\alpha}(z) = \log|z| + i \arg_{\alpha}(z)$, and $\arg_{\alpha}(z)$ is the unique number in $[\alpha, \alpha + 2\pi)$ such that

$$z/|z|=e^{i\arg_{\alpha}(z)}.$$

In other words, the unique argument of z in $[\alpha, \alpha + 2\pi)$.

- (b) Let $R_{\alpha} = \{re^{i\alpha} : r \geq 0\}$. The functions \log_{α} and \arg_{α} are continuous at each point of the "slit" complex plane $\mathbb{C}\backslash R_{\alpha}$, and discontinuous at each point of R_{α} .
- (c) The function \log_{α} is analytic on $\mathbb{C}\backslash R_{\alpha}$, and its derivative is given by $\log_{\alpha}'(z)=1/z$.

Complex logarithms and arguments

Proof:

(a) If $w = \log_{\Omega}(z)$ with $z \neq 0$, then $e^w = z$, hence

$$|z| = e^{\operatorname{Re} w}$$
, and $z/|z| = e^{i \operatorname{Im} w}$.

Thus $\operatorname{Re} w = \log |z|$, and $\operatorname{Im} w$ is an argument of z/|z|. Since $\operatorname{Im} w$ is restricted to $[\alpha, \alpha + 2\pi)$ by definition of \log_{α} , it follows that $\operatorname{Im} w$ is the unique argument for z that lies in the interval $[\alpha, \alpha + 2\pi)$.

(b) By (a), it suffices to consider \arg_{α} . If $z_0 \in \mathbb{C} \setminus R_{\alpha}$ and $(z_n)_{n \in \mathbb{N}}$ is a sequence converging to z_0 , then $\arg_{\alpha}(z_n)$ must converge to $\arg_{\alpha}(z_0)$. On the other hand, if $z_0 \in R_{\alpha} \setminus \{0\}$, there is a sequence $(z_n)_{n \in \mathbb{N}}$ converging to z_0 so that

$$\lim_{n\to\infty}\arg_{\alpha}\left(z_{n}\right)=\alpha+2\pi\neq\arg_{\alpha}\left(z_{0}\right)=\alpha.$$

Recall from Lecture 2 the following theorem:

Theorem

Let g be analytic on the open set Ω_1 , and let f be a continuous complex-valued function on the open set Ω . Assume that

- (i) $f(\Omega) \subseteq \Omega_1$,
- (ii) g' is never 0,
- (iii) g(f(z)) = z for all $z \in \Omega$ (thus f is one-to-one).

Then f is analytic on Ω and $f' = 1/(g' \circ f)$.

(c) By this theorem with $g=\exp$, $\Omega_1=\mathbb{C}$, $f=\log_{\alpha}$, and $\Omega=\mathbb{C}\backslash R_{\alpha}$ and the fact that exp is its own derivative we obtain that

$$(\log_{\alpha} z)' = \frac{1}{z}.$$

This completes the proof of the theorem.

Definition

Let S be a subset of $\mathbb C$ (or more generally any metric space), and let $f:S\to\mathbb C\backslash\{0\}$ be continuous.

- A function $g: S \to \mathbb{C}$ is a continuous logarithm of f if g is continuous on S and $f(s) = e^{g(s)}$ for all $s \in S$.
- A function $\theta: S \to \mathbb{R}$ is a continuous argument of f if θ is continuous on S and $f(s) = |f(s)|e^{i\theta(s)}$ for all $s \in S$.

Examples

- (a) If $S = [0, 2\pi]$ and $f(s) = e^{is}$, then f has a continuous argument on S, namely $\theta(s) = s + 2k\pi$ for any fixed integer k.
- (b) If f is a continuous mapping of S into $\mathbb{C}\backslash R_{\alpha}$ for some $\alpha\in\mathbb{R}$, then f has a continuous argument, namely $\theta(s)=\arg_{\alpha}(f(s))$.
- (c) If $S = \{z : |z| = 1\}$ and f(z) = z, then f does not have a continuous argument on S.

Theorem

Let $f: S \to \mathbb{C}$ be continuous.

- (a) If g is a continuous logarithm of f, then $\operatorname{Im} g$ is a continuous argument of f.
- (b) If θ is a continuous argument of f, then $\log |f| + i\theta$ is a continuous logarithm of f. Thus f has a continuous logarithm iff f has a continuous argument.
- (c) Assume that S is connected, and f has continuous logarithms g_1 and g_2 , and continuous arguments θ_1 and θ_2 . Then there are integers k and l such that $g_1(s) g_2(s) = 2\pi i k$ and $\theta_1(s) \theta_2(s) = 2\pi l$ for all $s \in S$. Thus $g_1 g_2$ and $\theta_1 \theta_2$ are constant on S.
- (d) If S is connected and $s, t \in S$, then

$$g(s) - g(t) = \log|f(s)| - \log|f(t)| + i(\theta(s) - \theta(t))$$

for all continuous logarithms g and all continuous arguments $\boldsymbol{\theta}$ of f .

Proof:

- (a) If $f(s) = e^{g(s)}$, then $|f(s)| = e^{\operatorname{Re} g(s)}$, hence $f(s)/|f(s)| = e^{i \operatorname{Im} g(s)}$ as required.
- (b) If $f(s) = |f(s)|e^{i\theta(s)}$, then $f(s) = e^{\log|f(s)|+i\theta(s)}$, so $\log|f| + i\theta$ is a continuous logarithm of f.
- (c) We have $f(s) = e^{g_1(s)} = e^{g_2(s)}$, hence $e^{g_1(s) g_2(s)} = 1$, for all $s \in S$. Hence $g_1(s) g_2(s) = 2\pi i k(s)$ for some integer-valued function $S \ni s \mapsto k(s) \in \mathbb{Z}$. Since g_1 and g_2 are continuous on S, so is k. But S is connected, so k is a constant function. A similar proof applies to any pair of continuous arguments of f.
- (d) If θ is a continuous argument of f, then $\log |f| + i\theta$ is a continuous logarithm of f by part (b). Thus if g is any continuous logarithm of f, then $g = \log |f| + i\theta + 2\pi ik$ by (c).

The result follows.

Theorem

Let $\gamma:[a,b]\to\mathbb{C}\backslash\{0\}$ be a continuous curve and $0\notin\gamma^*$. Then γ has a continuous argument, and consequently a continuous logarithm.

Proof: Let $\varepsilon = \inf\{|\gamma(t)| : t \in [a, b]\}$ be the distance from 0 to γ^* .

- Then $\varepsilon > 0$ because $0 \notin \gamma^*$ and γ^* is a closed set.
- By the uniform continuity of γ on [a,b], there is a partition $a=t_0 < t_1 < \cdots < t_n = b$ of [a,b] such that if $1 \leq j \leq n$ and $t \in [t_{j-1},t_j]$, then $\gamma(t) \in D\left(\gamma\left(t_j\right),\varepsilon\right)$.
- Since $\gamma:[t_{j-1},t_j]\to D\left(\gamma\left(t_j\right),\varepsilon\right)$ is a continuous function and $D\left(\gamma\left(t_j\right),\varepsilon\right)\subseteq\mathbb{C}\setminus R_{\alpha_j}$ for some $\alpha_j\in[0,2\pi]$, then each $\gamma_{|[t_{j-1},t_j]}$ has a continuous argument $\theta_j(t)=\arg_{\alpha_j}\left(\gamma_{|[t_{j-1},t_j]}(t)\right)$
- Since $\theta_j(t_j)$ and $\theta_{j+1}(t_j)$ differ by an integer multiple of 2π , we may (if necessary) redefine θ_{j+1} on $[t_j, t_{j+1}]$ so that the relation $\theta_j \cup \theta_{j+1}$ is a continuous argument of γ on $[t_{j-1}, t_{j+1}]$. Proceeding in this way, we obtain a continuous argument of γ on the entire interval [a, b].

Theorem

Let $\gamma:[a,b]\to\mathbb{C}$ be a closed curve. Fix $z_0\notin\gamma^*$, and let θ be a continuous argument of $\gamma-z_0$, (θ exists by the previous theorem). Then $\theta(b)-\theta(a)$ is an integer multiple of 2π . Furthermore, if θ_1 is another continuous argument of $\gamma-z_0$, then $\theta_1(b)-\theta_1(a)=\theta(b)-\theta(a)$.

Proof: We know that $(\gamma(t) - z_0) / |\gamma(t) - z_0| = e^{i\theta(t)}$, for $t \in [a, b]$.

• Since γ is a closed curve, $\gamma(a) = \gamma(b)$, hence

$$1 = \frac{\gamma(b) - z_0}{|\gamma(b) - z_0|} \cdot \frac{|\gamma(a) - z_0|}{\gamma(a) - z_0} = e^{i(\theta(b) - \theta(a))}.$$

• Consequently, $\theta(b) - \theta(a)$ is an integer multiple of 2π . If θ_1 is another continuous argument of $\gamma - z_0$, then we have that $\theta_1 - \theta = 2\pi I$ for some $I \in \mathbb{Z}$. Thus $\theta_1(b) = \theta(b) + 2\pi I$ and $\theta_1(a) = \theta(a) + 2\pi I$, so $\theta_1(b) - \theta_1(a) = \theta(b) - \theta(a)$.

Definition

Let $\gamma:[a,b]\to\mathbb{C}$ be a closed curve. If $z_0\notin\gamma^*$, let θ_{z_0} be a continuous argument of $\gamma-z_0$. The **winding number** of z_0 with respect to γ , is defined by

$$W(\gamma,z_0)=\frac{\theta_{z_0}(b)-\theta_{z_0}(a)}{2\pi}.$$

Remarks

- By the previous theorem, $W(\gamma, z_0)$ is well-defined, that is, $W(\gamma, z_0)$ does not depend on the particular continuous argument chosen.
- Intuitively, $W(\gamma, z_0)$ is the net number of revolutions of $\gamma(t)$ about the point z_0 when $t \in [a, b]$.
- Note that by the above definition, for any complex number w we have $W(\gamma, z_0) = W(\gamma + w, z_0 + w)$.

Theorem

Let $\gamma:[a,b]\to\mathbb{C}$ be a closed path, and z_0 a point not belonging to γ^* . Then

$$W(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \operatorname{Ind}_{\gamma}(z_0).$$

In other words, the winding number is the index function. More generally, if f is analytic on an open set Ω containing γ^* , and $z_0 \notin (f \circ \gamma)^*$, then

$$W(f\circ\gamma,z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)-z_0}dz.$$

Proof: Let ε be the distance from z_0 to γ^* .

• Since γ is uniformly continuous on [a, b], then there is a partition $a = t_0 < t_1 < \cdots < t_n = b$ so that

$$\gamma(t) \in D(\gamma(t_j), \varepsilon)$$
 for $t \in [t_{j-1}, t_j]$.

- By definition of ε we have $z_0 \notin D(\gamma(t_j), \varepsilon)$ for each $1 \le j \le n$.
- Consequently, the holomorphic function $h(z) = z z_0$, when restricted to $D(\gamma(t_i), \varepsilon)$ is nonvanishing.
- Therefore, $\frac{h'(z)}{h(z)} = \frac{1}{(z-z_0)}$ is holomorphic in $D\left(\gamma\left(t_j\right),\varepsilon\right)$.
- By the Cauchy theorem h'/h has a primitive g_j in $D(\gamma(t_j), \varepsilon)$.
- Therefore $g_i'(z) = 1/(z-z_0)$ for all $z \in D(\gamma(t_i), \varepsilon)$.
- The path γ restricted to $[t_{j-1},t_j]$ lies in the disk $D\left(\gamma\left(t_j\right),\varepsilon\right)$, hence

$$\int_{\gamma|\left[t_{i-1},t_{i}\right]}\frac{1}{z-z_{0}}dz=g_{j}\left(\gamma\left(t_{j}\right)\right)-g_{j}\left(\gamma\left(t_{j-1}\right)\right).$$

Thus

$$\int_{\gamma} \frac{1}{z-z_0} dz = \sum_{j=1}^{n} \left[g_j \left(\gamma \left(t_j \right) \right) - g_j \left(\gamma \left(t_{j-1} \right) \right) \right].$$

- Observe that the function $\exp(-g_i)h$ has a vanishing derivative on $D(\gamma(t_i), \varepsilon)$. If g_i is modified by the addition of a suitable constant, it follows that $h = \exp(g_i)$. If $\theta_i = \operatorname{Im} g_i$, then θ_i is a continuous argument of $h(z) = z - z_0$ on $D(\gamma(t_i), \varepsilon)$.
- Since $g_i(z) = \log |z| + i\theta_i(z)$, then

$$\int_{\gamma} \frac{1}{z - z_0} dz = i \sum_{j=1}^{n} \left[\theta_j \left(\gamma \left(t_j \right) \right) - \theta_j \left(\gamma \left(t_{j-1} \right) \right) \right].$$

• If θ is any continuous argument of $\gamma - z_0$, then $\theta_{|[t_{i-1},t_i]}$ is a continuous argument of $(\gamma - z_0)_{|[t_{i-1},t_i]}$. But so is $\theta_j \circ \gamma_{|[t_{i-1},t_i]}$, hence

$$\theta_{j}\left(\gamma\left(t_{j}\right)\right)-\theta_{j}\left(\gamma\left(t_{j-1}\right)\right)=\theta\left(t_{j}\right)-\theta\left(t_{j-1}\right),$$

since two continuous arguments differs by a multiple of 2π .

• Therefore,

$$\int_{\gamma} \frac{1}{z - z_0} dz = i \sum_{j=1}^{n} \left[\theta(t_j) - \theta(t_{j-1}) \right]$$
$$= i(\theta(b) - \theta(a))$$
$$= 2\pi i W(\gamma, z_0)$$

completing the proof of the first part of the theorem.

• Applying this result to the path $f \circ \gamma$, we get the second statement. Specifically, if $z_0 \notin (f \circ \gamma)^*$, then

$$W(f \circ \gamma, z_0) = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{1}{z - z_0} dz$$
$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - z_0} dz.$$