Lecture 6

Further applications of the Cauchy integral formula Singular points and their classification

MATH 503, FALL 2025

September 22, 2025

Cauchy inequality

Corollary

If f is holomorphic in an open set $\Omega \subseteq \mathbb{C}$ that contains a closed disc $\overline{D}(z_0,R)$ centered at z_0 and of radius R, then

$$|f^{(n)}(z_0)| \leq \frac{n! ||f||_{L^{\infty}(C)}}{R^n},$$

where $||f||_{L^{\infty}(C)} = \sup_{z \in C} |f(z)|$ denotes the supremum of |f| on the boundary circle $C = \partial \overline{D}(z_0, R)$.

Liouville's theorem and fundamental theorem of algebra

Theorem

If f is entire and bounded, then f is constant.

Proof: Let $B = \sup_{z \in \mathbb{C}} |f(z)|$. For each $z_0 \in \mathbb{C}$ and all R > 0, the Cauchy inequality yields

$$\left|f'\left(z_0\right)\right| \leq \frac{B}{R} \xrightarrow[R \to \infty]{} 0.$$

Thus $f'(z_0) = 0$ and hence f must be constant as \mathbb{C} is connected.

Theorem

Every non-constant polynomial

$$P(z) = a_n z^n + \cdots + a_1 z + a_0$$

with complex coefficients a_n, \ldots, a_0 has a root in \mathbb{C} . In particular, if $\deg P = n \ge 1$, then it has precisely n roots.

Fundamental theorem of algebra

Proof: If P has no roots, then 1/P(z) is a bounded holomorphic function.

• To see this, we can of course assume that $a_n \neq 0$, and write

$$\frac{P(z)}{z^n} = a_n + \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right)$$
 whenever $z \neq 0$.

• Since each term in the parentheses goes to 0 as $|z| \to \infty$ we conclude that there exists R > 0 so that if $c = |a_n|/2$, then

$$|P(z)| \ge c|z|^n$$
 whenever $|z| > R$.

- In particular, P is bounded from below when |z| > R.
- Since P is continuous and has no roots in the disc $|z| \le R$, it is bounded from below in that disc as well, thereby proving our claim.
- By Liouville's theorem we then conclude that 1/P is constant.
- This contradicts our assumption that *P* is non-constant and proves the theorem.

Morera's theorem — converse to the Cauchy theorem

Theorem

Suppose f is a continuous complex function in an open set $\Omega \subseteq \mathbb{C}$ such that

$$\int_{\partial \Delta} f(z) dz = 0$$

for every closed triangle $\Delta \subset \Omega$. Then $f \in H(\Omega)$.

Proof: Let V be a convex open set in Ω .

- As in the proof of Cauchy theorem for convex sets, we can construct a primitive $F \in H(V)$ such that F' = f.
- Fixing $a \in V$ it suffices to take

$$F(z) = \int_{[a,z]} f(\zeta) d\zeta$$
 for $z \in V$.

Morera's theorem — converse to the Cauchy theorem

• Observe that $[a, z] \subseteq V$ since V is convex. Let $z_0 \in V$, then

$$F(z) - F(z_0) = \int_{[a,z]} f(\zeta) d\zeta - \int_{[a,z_0]} f(\zeta) d\zeta$$
$$= \int_{[z_0,z]} f(\zeta) d\zeta.$$

Hence, we obtain

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \int_{[z_0, z]} (f(\zeta) - f(z_0)) d\zeta,$$

which implies

$$F'(z_0) = \lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = f(z_0).$$

• Since derivatives of holomorphic functions are holomorphic, we have $f \in H(V)$, for every convex open $V \subseteq \Omega$, hence $f \in H(\Omega)$.

Sequences of holomorphic functions

Definition

A sequence $(f_i)_{i\in\mathbb{N}}$ of functions in Ω is said to converge to f uniformly on compact subsets of Ω if to every compact $K \subseteq \Omega$ and to every $\varepsilon > 0$ there is $N = N(K, \varepsilon) \in \mathbb{N}$ such that $\sup_{z \in K} |f_i(z) - f(z)| < \varepsilon$ if i > N.

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open. Suppose $(f_i)_{i \in \mathbb{N}} \subseteq H(\Omega)$, and $\lim_{i \to \infty} f_i = f$ uniformly on compact subsets of Ω . Then $f \in H(\Omega)$, and $\lim_{i \to \infty} f'_i = f'$ uniformly on compact subsets of Ω .

Proof: The function f is continuous, since the convergence is uniform on each compact disc in Ω . Let Δ be a triangle in Ω . Then Δ is compact, so

$$\int_{\partial \Delta} f(z) dz = \lim_{j \to \infty} \int_{\partial \Delta} f_j(z) dz = 0$$

by Cauchy's theorem. Hence Morera's theorem implies that $f \in H(\Omega)$.

7/26

Sequences of holomorphic functions

- Let $K \subseteq \Omega$ be compact. There exists an r > 0 such that the union E of the closed discs $\overline{D}(z;r)$, for all $z \in K$, is a compact subset of Ω .
- ullet Applying Cauchy's inequality to $f-f_j$, we have

$$|f'(z) - f'_j(z)| \le r^{-1} ||f - f_j||_{L^{\infty}(E)}$$
 for $z \in K$,

where $||f||_{L^{\infty}(E)} = \sup_{z \in E} |f(z)|$. Since $\lim_{j \to \infty} f_j = f$ uniformly on E, it follows that $f'_j \to f'$ uniformly on K.

Corollary

Under the same hypothesis, $\lim_{j\to\infty} f_j^{(n)} = f^{(n)}$ uniformly, on every compact set $K\subseteq\Omega$, and for every positive integer $n\in\mathbb{N}$.

 Compare this with the situation on the real line, where sequences of infinitely differentiable functions can converge uniformly to nowhere differentiable functions!

Theorem

Suppose that $\Omega \subseteq \mathbb{C}$ is a region, and $f \in H(\Omega)$, and

$$Z(f) = \{a \in \Omega : f(a) = 0\}.$$

- (i) Then either $Z(f) = \Omega$, or
- (ii) Z(f) has no limit point in Ω .

In the latter case there corresponds to each $a \in Z(f)$ a unique positive integer m = m(a) such that

$$f(z) = (z - a)^m g(z)$$
 for $z \in \Omega$, (*)

where $g \in H(\Omega)$ and $g(a) \neq 0$. Furthermore, Z(f) is at most countable. The integer m is called the **order of the zero** which f has at the point a.

Proof: Let A be the set of all limit points of Z(f) in Ω . In other words,

$$A = \{ z \in \mathbb{C} : \exists_{(z_n)_{n \in \mathbb{N}} \subseteq Z(f)} \ z_n \neq z \ \text{ and } \lim_{n \to \infty} z_n = z \}.$$

- Since f is continuous, then $A \subseteq Z(f)$. Indeed, if $z \in A$ then there $(z_n)_{n \in \mathbb{N}} \subseteq Z(f)$ such that $z_n \neq z$ and $\lim_{n \to \infty} z_n = z$. By continuity of f we obtain that $f(z) = \lim_{n \to \infty} f(z_n) = 0$.
- We will show that A is closed in Ω . Indeed, if $(z_n)_{n\in\mathbb{N}}\subseteq A$ and $\lim_{n\to\infty}z_n=z_0$, then for any $\varepsilon>0$ there exists $N_\varepsilon\in\mathbb{N}$ such that $z_n\in D(z_0,\varepsilon)$ for all $n\geq N_\varepsilon$. Since z_n is a limit point of Z(f), then $D(z_0,\varepsilon)$ contains infinitely many points of Z(f) different from z_n , and hence infinitely many points of Z(f) different from z_0 . Thus $z_0\in A$.
- This shows that A is closed.

• Fix $a \in Z(f)$, and choose r > 0 so that $D(a; r) \subseteq \Omega$, then

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 for $z \in D(a; r)$.

- There are now two possibilities:
 - (i) Either $c_n = 0$ for all integers $n \ge 0$;
 - (ii) Or there is a smallest integer m (necessarily positive, since $f(a) = 0 = c_0$) such that $c_m \neq 0$.
- In that case, we can define

$$g(z) = \begin{cases} (z-a)^{-m} f(z) & \text{if } z \in \Omega \setminus \{a\}, \\ c_m & \text{if } z = a. \end{cases}$$

• It is clear that $g \in H(\Omega \setminus \{a\})$.

• Moreover, for $z \in D(a; r)$, we have

$$f(z) = (z-a)^m g(z) = (z-a)^m \Big(c_m + \sum_{n=1}^{\infty} c_{n+m} (z-a)^n \Big), \quad (**)$$

where

$$g(z) = \sum_{n=0}^{\infty} c_{n+m}(z-a)^n$$
 for $z \in D(a;r)$.

- Since $g \in H(D(a; r))$, we consequently conclude that $g \in H(\Omega)$.
- Hence we obtain the factorization from (*) for some $g \in H(\Omega)$, i.e.

$$f(z) = (z - a)^m g(z)$$
 for $z \in \Omega$.

• Moreover, $g(a) = c_m \neq 0$, and the continuity of g shows that there is a neighborhood of a in which g has no zero, by (**).

Lecture 6

• Thus we have shown that a is an isolated point of Z(f).

- If $a \in A$, and a is a limit point of Z(f) then the first case (i) must occur and all coefficients c_n are 0, then f(z) = 0 for all $z \in D(a; r)$, and consequently $D(a; r) \subseteq A$ and a is an interior point of A.
- This proves that A is open.
- If $B = \Omega \setminus A$, then B is open.
- Thus Ω is the union of the disjoint open sets A and B.
- Since Ω is connected, we have
 - (a) either $A = \Omega$, in which case $Z(f) = \Omega$,
 - (b) or $A = \emptyset$.
- In the latter case, Z(f) has at most finitely many points in each compact subset of Ω , and since Ω is σ -compact, Z(f) is at most countable.

Identity theorem

Theorem

If f and g are holomorphic functions in a region Ω and if f(z) = g(z) for all z in some set which has a limit point in Ω , then

$$f(z) = g(z)$$
 for all $z \in \Omega$.

Definition

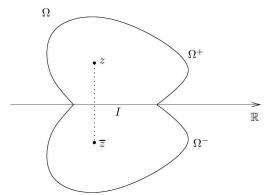
Suppose we are given a pair of functions f and F analytic in regions Ω and Ω' , respectively, with $\Omega \subseteq \Omega'$. If the two functions agree on the smaller set Ω , we say that F is an **analytic continuation** of f into the region Ω' .

• The identity theorem then guarantees that there can be only one such analytic continuation, since *F* is uniquely determined by *f*.

Let Ω be an open subset of $\mathbb C$ that is symmetric with respect to the real line, that is

$$z \in \Omega$$
 if and only if $\bar{z} \in \Omega$.

Let Ω^+ denote the part of Ω that lies in the upper half-plane and Ω^- that part that lies in the lower half-plane.



Also, let $I=\Omega\cap\mathbb{R}$ so that I denotes the interior of that part of the boundary of Ω^+ and Ω^- that lies on the real axis. Then we have

$$\Omega^+ \cup I \cup \Omega^- = \Omega.$$

Theorem

If f^+ and f^- are holomorphic functions in Ω^+ and Ω^- respectively, that extend continuously to I and

$$f^+(x) = f^-(x)$$
 for all $x \in I$,

then the function f defined on Ω by

$$f(z) = \begin{cases} f^+(z) & \text{if } z \in \Omega^+, \\ f^+(z) = f^-(z) & \text{if } z \in I, \\ f^-(z) & \text{if } z \in \Omega^-, \end{cases}$$

is holomorphic on all of Ω .

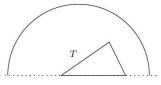
Proof: One notes first that f is continuous throughout Ω . The only difficulty is to prove that f is holomorphic at points of I. Suppose D is a disc centered at a point on I and entirely contained in Ω . We prove that f is holomorphic in D by Morera's theorem.

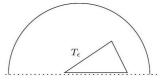
• Suppose T is a triangle in D. If T does not intersect I, then

$$\int_T f(z)dz=0,$$

since f is holomorphic in the upper and lower half-discs.

 Suppose now that one side or vertex of T is contained in I, and the rest of T is in, say, the upper half-disc.

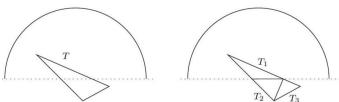




• If T_{ϵ} is the triangle obtained from T by slightly raising the edge or vertex which lies on I, we have $\int_{T_{\epsilon}} f(z) dz = 0$, since T_{ϵ} is entirely contained in the upper half-disc. We then let $\epsilon \to 0$, and by continuity we conclude that

$$\int_{T} f(z)dz = 0.$$

If the interior of T intersects I, like below



we can reduce the situation to the previous one by writing T as the union of triangles each of which has an edge or vertex on I. By Morera's theorem f is holomorphic in D, as desired.

Schwarz reflection principle

Theorem

Suppose that f is a holomorphic function in Ω^+ that extends continuously to I and such that f is real-valued on I. Then there exists a function F holomorphic in all of Ω such that F = f on Ω^+ .

Proof. The idea is simply to define F(z) for $z \in \Omega^-$ by $F(z) = \overline{f(\overline{z})}$

• To prove that F is holomorphic in Ω^- we note that if $z, z_0 \in \Omega^-$, then $\overline{z}, \overline{z_0} \in \Omega^+$ and hence, the power series expansion of f near $\overline{z_0}$ gives

$$f(\overline{z}) = \sum a_n (\overline{z} - \overline{z_0})^n.$$

• As a consequence we see that F is holomorphic in Ω^- , since

$$F(z) = \sum \overline{a_n} (z - z_0)^n.$$

- Since f is real valued on I we have $\overline{f(x)} = f(x)$ whenever $x \in I$ and hence F extends continuously up to I.
- The proof is complete once we invoke the symmetry principle.

Riemann's theorem on removable singularities

Definition

- If $a \in \Omega$ and $f \in H(\Omega \setminus \{a\})$, then f is said to have an **isolated** singularity at the point a.
- If f can be so defined at a that the extended function is holomorphic in Ω , the singularity is said to be **removable**.

Theorem

Suppose $f \in H(\Omega \setminus \{a\})$ and f is bounded in D'(a; r), for some r > 0. Then f has a removable singularity at a.

Proof: Define

$$h(z) = \begin{cases} (z-a)^2 f(z) & \text{if } z \in \Omega \setminus \{a\}, \\ 0 & \text{if } z = a. \end{cases}$$

Riemann's theorem on removable singularities

Our boundedness assumption shows that

$$h'(a) = \lim_{z \to a} \frac{h(z) - h(a)}{z - a} = \lim_{z \to a} (z - a)f(z) = 0.$$

• Since h is evidently differentiable at every other point of Ω , we have $h \in H(\Omega)$. Moreover, h(a) = h'(a) = 0, so

$$h(z) = \sum_{n=2}^{\infty} c_n (z-a)^n$$
 for $z \in D(a; r)$.

• We obtain the desired holomorphic extension of f by setting $f(a) = c_2$, for then

$$f(z) = \sum_{n=0}^{\infty} c_{n+2}(z-a)^n$$
 for $z \in D(a; r)$.

Theorem

If $a \in \Omega$ and $f \in H(\Omega \setminus \{a\})$, then f has a singularity at a, and one of the following three cases must occur:

- (a) f has a removable singularity at a.
- (b) There are $c_1, \ldots, c_m \in \mathbb{C}$ for some $m \in \mathbb{N}$ and $c_m \neq 0$, such that

$$f(z) - \sum_{k=1}^{m} \frac{c_k}{(z-a)^k}$$

has a removable singularity at a.

- (c) If r > 0 and $D(a; r) \subseteq \Omega$, then f(D'(a; r)) is dense in \mathbb{C} .
 - The conclusion of item (iii) is called the Casorati–Weierstrass theorem.

Remarks

• In case (b), f is said to have a **pole of order** m at a. The function

$$\sum_{k=1}^m c_k (z-a)^{-k}$$

a polynomial in $(z-a)^{-1}$, is called the **principal part** of f at a.

- It is clear in this situation that $|f(z)| \to \infty$ as $z \to a$.
- In case (c), f is said to have an **essential singularity** at a.
- A statement equivalent to (c) is that to each complex number $w \in \mathbb{C}$ there corresponds a sequence $(z_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} z_n = a$ and

$$\lim_{n\to\infty}f\left(z_n\right)=w.$$

Proof: Suppose (c) fails.

• Then there exist r > 0, and $\delta > 0$, and $w \in \mathbb{C}$ such that

$$|f(z)-w|>\delta$$
 for all $z\in D'(a;r)$.

• Let us write D for D(a; r) and D' for D'(a; r). Define

$$g(z) = \frac{1}{f(z) - w} \quad \text{for} \quad z \in D'. \tag{1}$$

- Then $g \in H(D')$ and $|g| < 1/\delta$. Since g is bounded, then by the previous theorem it extends to a holomorphic function in D.
- If $g(a) \neq 0$, then formula (1) shows that f is bounded in $D'(a; \rho)$ for some $\rho > 0$.
- Hence, by the previous theorem f can be extended to a holomorphic function in $D(a; \rho)$, and consequently holomorphic in Ω , yielding (a).

• If g has a zero of order $m \ge 1$ at a, then we can write

$$g(z) = (z - a)^m g_1(z) \quad \text{for} \quad z \in D,$$
 (2)

where $g_1 \in H(D)$ and $g_1(a) \neq 0$. Also, g_1 has no zero in D', by (1).

- Thus we can set $h = 1/g_1$ in D.
- Then $h \in H(D)$, and h has no zero in D, and we can write

$$f(z) - w = (z - a)^{-m} h(z) \quad \text{for} \quad z \in D'.$$
 (3)

But h has an expansion of the form

$$h(z) = \sum_{n=0}^{\infty} b_n (z-a)^n \quad \text{for} \quad z \in D,$$
 (4)

with $b_0 \neq 0$.

- Identity (3) shows that (b) holds, with $c_k = b_{m-k}$ for k = 1, ..., m.
- This completes the proof.

Remarks

Suppose f has an isolated singularity at z_0 , and let

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

be the Laurent expansion of f about z_0 . Then one can see that

- f has a **removable singularity** at z_0 if $a_n = 0$ for all n < 0.
- f has a **pole of order** m at z_0 if m is the largest positive integer such that $a_{-m} \neq 0$. (A pole of order 1 is called a **simple pole**.)
- Finally, if $a_n \neq 0$ for infinitely many n < 0, we say that f has an essential singularity at z_0 .
- The behavior of a complex function f at ∞ may be studied by considering g(z) = f(1/z) for z near 0. Then we say that f has an **isolated singularity** at ∞ if f is analytic on $\{z \in \mathbb{C} : |z| > r\}$ for some r; thus the function g(z) = f(1/z) has an isolated singularity at 0. The type of singularity of f at ∞ is then defined as that of g at 0.

Lecture 6