Lecture 4

Index function Cauchy theorem

MATH 503, FALL 2025

September 15, 2025

Index function

For $a \in \mathbb{C}$ and $a \notin \gamma^*$, we write

$$\operatorname{Ind}_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} dz$$

and $\operatorname{Ind}_{\gamma}(a)$ is called the **index** of a with respect to γ . This is also called the **winding number** of a with respect to γ .

Theorem

For a closed path γ and $\Omega = \mathbb{C} \backslash \gamma^*$, we have

$$\operatorname{Ind}_{\gamma}(a) \in \mathbb{Z}$$
 for $a \in \Omega$.

Further $\operatorname{Ind}_{\gamma}(a)$ is constant on each region of Ω determined by γ and it is equal to zero on the unbounded region of Ω determined by γ .

Index function

Proof: By definition

$$\operatorname{Ind}_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} dz = \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{\gamma'(t)}{\gamma(t) - a} dt$$

where $\gamma: [\alpha, \beta] \to \mathbb{C}$ is a closed path so that $\gamma(t) \neq a$ for $t \in [\alpha, \beta]$.

We consider

$$h(t) = \int_{\alpha}^{t} \frac{\gamma'(t)}{\gamma(t) - a} dt.$$

- We prove that $h(\beta)$ is a multiple of $2\pi i$ and this implies $\operatorname{Ind}_{\gamma}(a) \in \mathbb{Z}$.
- Since $\gamma(t)$ is piecewise continuously differentiable, the integral on the right exists for $t \in [\alpha, \beta]$. Further h(t) is continuous on $[\alpha, \beta]$ and

$$h'(t) = \frac{\gamma'(t)}{\gamma(t) - a}$$

for all but finitely many $t \in [\alpha, \beta]$.

• Now we observe that the derivative of $e^{-h(t)}(\gamma(t) - a)$ vanishes for all but finitely many $t \in [\alpha, \beta]$.

Index function

- This implies that $e^{-h(t)}(\gamma(t) a) = c \in \mathbb{C}$ for $t \in [\alpha, \beta]$, where c is a constant, since the function on the left is continuous in $[\alpha, \beta]$.
- By putting $t = \alpha$ and $t = \beta$, we have

$$e^{-h(\alpha)}(\gamma(\alpha)-a)=e^{-h(\beta)}(\gamma(\beta)-a),$$

which implies $e^{h(\beta)}=1$, since $\gamma(\alpha)=\gamma(\beta)$, $a
otin \gamma^*$ and $h(\alpha)=0$.

- Thus the function $\operatorname{Ind}_{\gamma}(z)$ is integer valued on Ω and continuous.
- Therefore for any component C of Ω , we see that $\operatorname{Ind}_{\gamma}(C)$ is a connected set of integers and hence it consists of a single element.
- Next we take z in the unbounded region such that $\frac{|z|}{2} \ge |a|$ and $|z| > \frac{\ell(\gamma)}{\pi}$. Then $|z a| \ge |z| |a| \ge \frac{|z|}{2}$ and

$$|\mathsf{Ind}_{\gamma}(z)| \leq \frac{1}{2\pi} \frac{2}{|z|} \ell(\gamma) < 1.$$

• This implies $\operatorname{Ind}_{\gamma}(z) = 0$ on the unbounded region, since $\operatorname{Ind}_{\gamma}(z) \in \mathbb{Z}$ and constant on the unbounded region as already proved.

Remarks

- If γ is a closed curve in $\mathbb C$ and a is a point not lying on γ^* , then we may calculate the number of times the curve γ winds around a by looking at the change of argument of the quantity z-a as z travels on γ^* . Every time γ^* loops around a, the quantity $(1/2\pi)\arg(z-a)$ increases (or decreases) by 1.
- When we define a complex logarithm function we will be able to explain geometrically that $\operatorname{Ind}_{\gamma}(a)$ represents the number of times the curve γ wraps around a. That is why it is also called the winding number of γ around a.

Index for positively oriented circles

Theorem

If γ is the positively oriented circle with center at a and radius r, then

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} 1, & \text{if } |z - a| < r, \\ 0, & \text{if } |z - a| > r. \end{cases}$$

Proof: Let

$$\gamma(t) := a + re^{it}, \quad 0 \le t \le 2\pi,$$

By the previous theorem it is enough to compute $Ind_{\gamma}(a)$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a} = \frac{r}{2\pi} \int_{0}^{2\pi} (re^{it})^{-1} e^{it} dt = 1.$$

Definition

Suppose that $f:\Omega\to\mathbb{C}$ is a function on the open set Ω . A **primitive** for f on Ω is a function F that is holomorphic on Ω and such that

$$F'(z) = f(z)$$
 for all $z \in \Omega$.

Theorem

If a continuous function $f:\Omega\to\mathbb{C}$ has a primitive F in Ω , and γ is a curve in Ω that begins at w_1 and ends at w_2 , then

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1).$$

Proof: If γ is a continuously differentiable curve, the proof is a simple application of the chain rule and the fundamental theorem of calculus.

• Indeed, if $z(t):[a,b]\to\mathbb{C}$ is a parametrization for γ , then $z(a)=w_1$ and $z(b)=w_2$, and we have

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

$$= \int_{a}^{b} F'(z(t))z'(t)dt$$

$$= \int_{a}^{b} \frac{d}{dt}F(z(t))dt = F(z(b)) - F(z(a)).$$

• If γ is only a piecewise continuously differentiable curve, then it can be expressed in the form $\gamma = \gamma_1 + \ldots + \gamma_k$, where each γ_j is a continuously differentiable curve. We can then apply the previous result to each γ_j , and we are done.

Corollary

If γ is a closed curve in an open set Ω , and $f:\Omega\to\mathbb{C}$ is continuous and has a primitive in Ω , then

$$\int_{\gamma} f(z)dz = 0.$$

Proof: This is evident since the endpoints of a closed curve coincide.

Example

The function f(z) = 1/z does not have a primitive in the open set $\mathbb{C} \setminus \{0\}$, since if C is the unit circle parametrized by $z(t) = e^{it}$, with $0 < t < 2\pi$, we have

$$\int_C f(z)dz = \int_0^{2\pi} \frac{ie^{it}}{e^{it}}dt = 2\pi i \neq 0.$$

Corollary

If f is holomorphic in a region Ω and f' = 0, then f is constant.

Proof: Fix a point $w_0 \in \Omega$.

- It suffices to show that $f(w) = f(w_0)$ for all $w \in \Omega$.
- Since Ω is connected, for any $w \in \Omega$, there exists a curve γ which joins w_0 to w. Since f is clearly a primitive for f', we have

$$\int_{\gamma} f'(z)dz = f(w) - f(w_0).$$

• By assumption, f' = 0 so the integral on the left is 0 , and we conclude that $f(w) = f(w_0)$ as desired.

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and let \triangle be a closed triangle in Ω and $p \in \Omega$. Let f be continuous in Ω and holomorphic in $\Omega \setminus \{p\}$. Then

$$\int_{\partial\triangle}f(z)dz=0,$$

where $\partial \triangle$ denotes the boundary of \triangle .

Remark

This theorem implies that

$$\int_{\gamma} f(z)dz = 0$$

for all triangular paths in an open set Ω whenever $f \in H(\Omega)$. Hence, we say that the Cauchy theorem is valid for all triangular paths in Ω .

Lecture 4

Proof: Let $\triangle = \triangle(A, B, C)$ be a triangle in Ω with vertices A, B and C.

- Put $J = \int_{\partial \triangle} f(z) dz$.
- Let L be the length of $\partial \triangle$ and write $\triangle_0 = \triangle$.
- Let D, E, F be the midpoints of [A, B], [B, C] and [C, A], respectively, and consider the four triangles arising from joining these midpoints:

$$\triangle_{01} = \triangle(A, D, F), \quad \triangle_{02} = \triangle(D, B, E), \quad \triangle_{03} = \triangle(F, E, C)$$

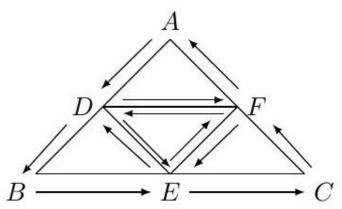
$$\triangle_{04} = \triangle(E, F, D).$$

Then

$$J = \int_{\partial \triangle} f(z) dz = \sum_{i=1}^{4} \int_{\partial \triangle_{0i}} f(z) dz$$

and the length of $\partial \triangle_{0i}$ is equal to $2^{-1}L$ for $1 \le i \le 4$.

$$\triangle_0 = \triangle(A, B, C),$$



$$\triangle_{01} = \triangle(A, D, F), \quad \triangle_{02} = \triangle(D, B, E), \quad \triangle_{03} = \triangle(F, E, C)$$
$$\triangle_{04} = \triangle(E, F, D).$$

• By the pigeonhole principle there exists i_0 with $1 \le i_0 \le 4$ such that

$$\left|\int_{\partial\triangle_{i_0}}f(z)dz\right|\geq 4^{-1}|J|.$$

Then set $\triangle_1 = \triangle_{0i_0}$.

Proceeding similarly, we obtain a sequence of triangles

$$\triangle \supset \triangle_1 \supset \ldots \supset \triangle_n \supset \ldots$$

such that

$$\left| \int_{\partial \triangle_n} f(z) dz \right| \ge 4^{-n} |J| \quad \text{ for } \quad n \ge 0,$$

and the length of $\partial \triangle_n$ is equal to $2^{-n}L$.

• By the compactness we have

$$\bigcap_{n\geq 0}\triangle_n\neq\emptyset.$$

- Therefore, there exists z_0 such that $z_0 \in \triangle_n$ for every $n \ge 0$.
- First, we consider the case $p \notin \triangle$.
- We observe that f(z) is holomorphic at z_0 since $p \neq z_0$. Then for $\varepsilon > 0$ there exists $\delta > 0$ depending only on ε such that

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|$$
 (X)

whenever $|z - z_0| < \delta$.

• Since $\int_{\partial \triangle_n} z^m dz = 0$ for any $m, n \ge 0$, we have

$$\int_{\partial \triangle_n} f(z) dz = \int_{\partial \triangle_n} \left(f(z) - f(z_0) - f'(z_0) (z - z_0) \right) dz \tag{Y}$$

for any $n \ge 0$.

- Let $n_0 \in \mathbb{N}$ be the smallest positive integer such that $2^{-n_0}L < \delta$.
- Then for $z \in \triangle_{n_0}$, we have $|z z_0| < 2^{-n_0}L < \delta$.
- Now we use (X) to estimate the absolute value of the integral on the right-hand side of (Y) with $n = n_0$ and obtain

$$\left| \int_{\partial \triangle_{n_0}} f(z) dz \right| \le \varepsilon 4^{-n_0} L^2. \tag{Z}$$

- Using the lower bound for (Z) with $n = n_0$, we obtain $|J| \le \varepsilon L^2$.
- This is true for every $\varepsilon > 0$ and hence J = 0.
- Thus we may suppose that $p \in \triangle$. Let $\triangle = \triangle(A, B, C)$ be a triangle formed by ordered triple A, B, C.
- First we prove that J=0 when p is a vertex of \triangle , say p=A.
- We may assume that A, B and C are not colinear otherwise the assertion follows immediately.

• Let $\varepsilon > 0$ and take $x \in [A, B], y \in [A, C]$ so that $|x - A| < \varepsilon$ and $|y - A| < \varepsilon$. We observe that

$$J = \int_{\partial \triangle (A,x,y)} f(z) dz + \int_{\partial \triangle (x,B,y)} f(z) dz + \int_{\partial \triangle (B,C,y)} f(z) dz.$$

- Further, the last two integrals are equal to zero since a does not lie in triangles $\triangle(x, B, y)$ and $\triangle(B, C, y)$.
- Since f is continuous on compact set $\triangle(A, x, y)$, we observe that $K = \sup_{z \in \triangle(A, x, y)} |f(z)| < \infty$. Therefore,

$$\left| \int_{\partial \triangle (A, x, y)} f(z) dz \right| \leq 4\varepsilon K \underset{\varepsilon \to 0}{\longrightarrow} 0.$$

• Now it remains to show that J=0 when p is not a vertex of \triangle . Then

$$J = \int_{\partial \triangle (A,B,p)} f(z)dz + \int_{\partial \triangle (B,C,p)} f(z)dz + \int_{\partial \triangle (C,A,p)} f(z)dz$$

and, as proved above, all the integrals are zero. Hence J=0.

Cauchy's theorem for convex sets

Theorem

Let $\Omega \subseteq \mathbb{C}$ be a convex open set and $p \in \Omega$. Let f be continuous in Ω and holomorphic in $\Omega \setminus \{p\}$. Then f has a primitive in Ω and

$$\int_{\gamma} f(z)dz = 0$$

for any closed path γ in Ω . In particular, $f \in H(\Omega)$.

Corollary (The Cauchy theorem for open convex sets)

Let γ be a closed path in an open convex set $\Omega \subseteq \mathbb{C}$ and $f \in H(\Omega)$. Then

$$\int_{\gamma} f(z)dz = 0,$$

and f has a primitive function in Ω .

Cauchy's theorem for convex sets

• Let [p, z] denotes the line joining from p to z, and consider

$$F(z) = \int_{[p,z]} f(\zeta) d\zeta$$
 for $z \in \Omega$.

• Observe that $[p, z] \subseteq \Omega$ since Ω is convex. Let $z_0 \in \Omega$, then

$$F(z) - F(z_0) = \int_{[p,z]} f(\zeta) d\zeta - \int_{[p,z_0]} f(\zeta) d\zeta$$
$$= \int_{[z_0,z]} f(\zeta) d\zeta$$

by the Cauchy-Goursat theorem, since

$$\begin{split} 0 &= \int_{\partial \triangle(p,z,z_0)} f(\zeta) d\zeta = \int_{[p,z]} f(\zeta) d\zeta + \int_{[z,z_0]} f(\zeta) d\zeta + \int_{[z_0,p]} f(\zeta) d\zeta \\ &= \int_{[p,z]} f(\zeta) d\zeta - \int_{[p,z_0]} f(\zeta) d\zeta - \int_{[z_0,z]} f(\zeta) d\zeta. \end{split}$$

Cauchy's theorem for convex sets

Hence, we obtain

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \int_{[z_0, z]} (f(\zeta) - f(z_0)) d\zeta.$$

• Let $\varepsilon > 0$. Since f is continuous at z_0 , there exists $\delta > 0$ such that $|f(\zeta) - f(z_0)| < \varepsilon$ whenever $|z - z_0| < \delta$. Thus

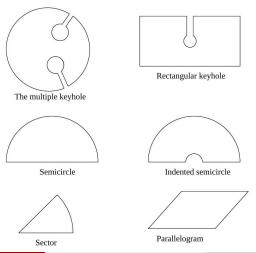
$$\left|\frac{F(z)-F(z_0)}{z-z_0}-f(z_0)\right|<\varepsilon$$

whenever $|z - z_0| < \delta$.

- This implies that F is analytic at z_0 and $F'(z_0) = f(z_0)$. Since z_0 is an arbitrary point of Ω , we have $F \in H(\Omega)$ and f = F' in Ω .
- Moreover, $\int_{\Sigma} f(z)dz = 0$, since f has a primitive F in Ω .

Remarks

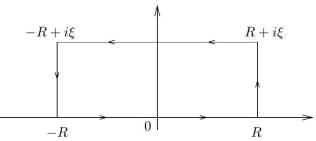
 The Cauchy theorem can be proved in all the regions illustrated below, even though some of them are not convex. Explain why?



• We show that if $\xi \in \mathbb{R}$, then

$$e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx.$$

- If $\xi = 0$, we know that $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$.
- Now suppose that $\xi > 0$, and consider the function $f(z) = e^{-\pi z^2}$, which is entire, and in particular holomorphic in the interior of the contour γ_R given here



• The contour γ_R is a rectangle with vertices $R, R+i\xi, -R+i\xi, -R$ and the positive counterclockwise orientation. By Cauchy's theorem,

$$\int_{\gamma_R} f(z)dz = 0.$$

The integral over the real segment is simply

$$\int_{-R}^{R} e^{-\pi x^2} dx$$

which converges to 1 as $R \to \infty$.

• The integral on the vertical side on the right is

$$I(R) = \int_0^{\xi} f(R+iy)idy = \int_0^{\xi} e^{-\pi(R^2+2iRy-y^2)}idy.$$

• This integral goes to 0 as $R \to \infty$ since ξ is fixed and we may estimate it by

$$|I(R)| \leq Ce^{-\pi R^2}.$$

- Similarly, the integral over the vertical segment on the left also goes to 0 as $R \to \infty$ for the same reasons.
- Finally, the integral over the horizontal segment on top is

$$\int_{R}^{-R} e^{-\pi(x+i\xi)^2} dx = -e^{\pi\xi^2} \int_{-R}^{R} e^{-\pi x^2} e^{-2\pi i x \xi} dx.$$

• Therefore, we find in the limit as $R \to \infty$ that

$$0 = 1 - e^{\pi \xi^2} \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx$$

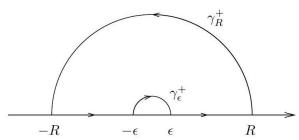
as desired.

• In the case ξ < 0, we then consider the symmetric rectangle, in the lower half-plane.

Another classical example is

$$\int_0^\infty \frac{1-\cos x}{x^2} dx = \frac{\pi}{2}.$$

• Here we consider the function $f(z) = (1 - e^{iz})/z^2$, and we integrate over the indented semicircle in the upper half-plane positioned on the x-axis, as here



• If we denote by γ_{ϵ}^+ and γ_R^+ the semicircles of radii ϵ and R with negative and positive orientations respectively, Cauchy's theorem gives

$$\int_{-R}^{-\epsilon} \frac{1 - e^{ix}}{x^2} dx + \int_{\gamma_{\epsilon}^+} \frac{1 - e^{iz}}{z^2} dz + \int_{\epsilon}^{R} \frac{1 - e^{ix}}{x^2} dx + \int_{\gamma_{R}^+} \frac{1 - e^{iz}}{z^2} dz = 0$$

• First we let $R \to \infty$ and observe that

$$\left|\frac{1-e^{iz}}{z^2}\right| \le \frac{2}{|z|^2},$$

so the integral over γ_R^+ goes to zero.

Therefore

$$\int_{|x|>\epsilon} \frac{1 - e^{ix}}{x^2} dx = -\int_{\gamma_+^+} \frac{1 - e^{iz}}{z^2} dz.$$

Next, note that

$$f(z) = \frac{-iz}{z^2} + E(z)$$

where E(z) is bounded as $z \to 0$.

• On γ_{ϵ}^+ we have $z = \epsilon e^{i\theta}$ and $dz = i\epsilon e^{i\theta} d\theta$. Thus

$$\int_{\gamma_{\epsilon}^+} rac{1-e^{iz}}{z^2} dz
ightarrow \int_{\pi}^0 (-ii) d heta = -\pi \quad ext{ as } \quad \epsilon
ightarrow 0.$$

Taking real parts then yields

$$\int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2} dx = \pi.$$

• Since the integrand is even, the desired formula is proved.