Lecture 2

MATH 503, FALL 2025

September 8, 2025

Compact sets

• Let (X,d) be a metric space and $\Omega \subseteq X$. An **open covering** of Ω is a family of open sets $(U_{\alpha})_{\alpha \in A}$ (A is not necessarily countable) such that

$$\Omega\subseteq\bigcup_{\alpha\in\mathcal{A}}U_{\alpha}.$$

Definition

A set Ω in a metric space is said to be compact if and only if every open covering of Ω has a finite subcovering.

Theorem

A set Ω in a metric space is compact if and only if every sequence $(z_n)_{n\in\mathbb{N}}\subseteq\Omega$ has a subsequence that converges to a point in Ω .

Theorem

A set $\Omega \subseteq \mathbb{C}$ is compact if and only if it is closed and bounded.

Compactification of \mathbb{C}

• By adjoining a point ∞ , which we call the point at ∞ , to $\mathbb C$ we obtain the **extended complex plane**

$$\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}.$$

Next, we introduce the Riemann sphere

$$\mathbb{S} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \right\}$$

and

$$f: \mathbb{S} \to \mathbb{C}_{\infty}$$

given by

$$f((x_1, x_2, x_3)) = \frac{x_1 + ix_2}{1 - x_3}$$
 if $(x_1, x_2, x_3) \neq (0, 0, 1)$,

and

$$f((0,0,1)) = \infty.$$

• We write N = (0, 0, 1) and we call N the north pole of \mathbb{S} . Further the function f is called **stereographic projection**.

Stereographic projection is one-to-one

- First, we show that f is one-one. Let (x_1, x_2, x_3) and (y_1, y_2, y_3) be distinct elements of $\mathbb S$ such that $f((x_1, x_2, x_3)) = f((y_1, y_2, y_3))$.
- Then (x_1, x_2, x_3) and (y_1, y_2, y_3) are different from N, and therefore

$$\frac{x_1 + ix_2}{1 - x_3} = \frac{y_1 + iy_2}{1 - y_3} = z \in \mathbb{C}.$$

Thus

$$|z|^2 = \frac{x_1^2 + x_2^2}{(1 - x_3)^2} = \frac{y_1^2 + y_2^2}{(1 - y_3)^2}.$$

• Since (x_1, x_2, x_3) and (y_1, y_2, y_3) are in \mathbb{S} , we have

$$|z|^2 = \frac{1 - x_3^2}{(1 - x_3)^2} = \frac{1 - y_3^2}{(1 - y_3)^2} \iff |z|^2 = \frac{1 + x_3}{1 - x_3} = \frac{1 + y_3}{1 - y_3}.$$

Therefore

$$\frac{|z|^2 - 1}{|z|^2 + 1} = x_3, \quad \frac{|z|^2 - 1}{|z|^2 + 1} = y_3.$$

• Thus $x_3 = y_3$ and hence $x_1 = y_1$, and $x_2 = y_2$.

Stereographic projection is onto

- Next, we show that f is onto. If $z = \infty$, we take $N \in \mathbb{S}$ so that $f(N) = \infty$.
- Thus, we may suppose that $z \in \mathbb{C}$. We take

$$x_1 = \frac{z + \overline{z}}{|z|^2 + 1}, \quad x_2 = \frac{z - \overline{z}}{i(|z|^2 + 1)}, \quad x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}.$$

Then

$$x_1^2 + x_2^2 + x_3^2 = \frac{(z + \overline{z})^2 - (z - \overline{z})^2 + (|z|^2 - 1)^2}{(|z|^2 + 1)^2}$$
$$= \frac{4|z|^2 + (|z|^2 - 1)^2}{(|z|^2 + 1)^2} = 1$$

implying $(x_1, x_2, x_3) \in \mathbb{S}$. Further, we check that $f((x_1, x_2, x_3)) = z$.

Geometric interpretation of the stereographic projection

- Let z = x + iy be a point in the complex plane and we identify it by (x, y, 0) in \mathbb{R}^3 . We consider the line joining z to N in \mathbb{R}^3 .
- Its parametric representation is

$$tN + (1-t)z$$
, for $-\infty < t < \infty$.

The points on this line are

$$((1-t)x,(1-t)y,t),$$
 for $-\infty < t < \infty$.

ullet Thus, the line intersects $\mathbb S$ if and only if

$$(1-t)^2x^2 + (1-t)^2y^2 + t^2 = 1,$$

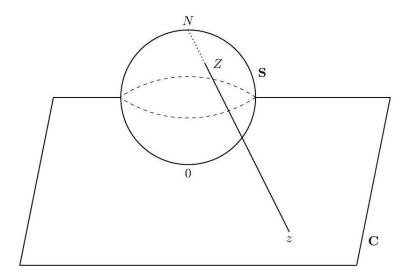
which we re-write as

$$(1-t)|z|^2 = (1-t)x^2 + (1-t)y^2 = 1+t.$$

Hence

$$t = \frac{|z|^2 - 1}{|z|^2 + 1}.$$

Geometric interpretation of the stereographic projection



Geometric interpretation of the stereographic projection

• Thus, the line intersects S at Z given by

$$\begin{split} Z = & \left(\left(1 - \frac{|z|^2 - 1}{|z|^2 + 1} \right) x, \left(1 - \frac{|z|^2 - 1}{|z|^2 + 1} \right) y, \frac{|z|^2 - 1}{|z|^2 + 1} \right) \\ = & \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1} \right) \\ = & \left(\frac{z + \overline{z}}{|z|^2 + 1}, \frac{z - \overline{z}}{i \left(|z|^2 + 1 \right)}, \frac{|z|^2 - 1}{|z|^2 + 1} \right). \end{split}$$

- We summarize the above procedure as follows:
 - Let z = (x, y) be a point in the complex plane.
 - The line passing through (x, y, 0) and (0, 0, 1) intersects \mathbb{S} exactly at one point $Z = (x_1, x_2, x_3)$ given above and $f((x_1, x_2, x_3)) = z$.
 - We call (x_1, x_2, x_3) the spherical coordinates of z and (0, 0, 1) the spherical coordinates of ∞ .

• Let $z \in \mathbb{C}_{\infty}$ and $z' \in \mathbb{C}_{\infty}$. Let (x_1, x_2, x_3) and (x'_1, x'_2, x'_3) be spherical coordinates of z and z', respectively. Namely,

$$x_1 = \frac{z + \overline{z}}{|z|^2 + 1}, \quad x_2 = \frac{z - \overline{z}}{i(|z|^2 + 1)}, \quad x_3 = \frac{|z|^2 - 1}{|z|^2 + 1},$$

and

$$x'_1 = \frac{z' + \overline{z}'}{|z'|^2 + 1}, \quad x'_2 = \frac{z' - \overline{z}'}{i(|z'|^2 + 1)}, \quad x'_3 = \frac{|z'|^2 - 1}{|z'|^2 + 1}.$$

Then we define

$$d(z,z') = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2 + (x_3 - x_3')^2}.$$

Thus

$$d(z,z')^{2} = (x_{1} - x'_{1})^{2} + (x_{2} - x'_{2})^{2} + (x_{3} - x'_{3})^{2}$$

= 2 - 2 (x₁x'₁ + x₂x'₂ + x₃x'₃).

Now we note

$$\begin{split} x_{1}x_{1}' + x_{2}x_{2}' + x_{3}x_{3}' \\ &= \frac{\left(z + \overline{z}\right)\left(z' + \overline{z}'\right)}{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)} - \frac{\left(z - \overline{z}\right)\left(z' - \overline{z}'\right)}{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)} + \frac{\left(|z|^{2} - 1\right)\left(|z'|^{2} - 1\right)}{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)} \\ &= \frac{\left(|z|^{2} - 1\right)\left(|z'|^{2} - 1\right) + 2z\overline{z}' + 2\overline{z}z'}{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)} \\ &= \frac{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)}{\left(|z'|^{2} + 1\right) - 2\left(|z|^{2} + 1\right) - 2\left(|z'|^{2} + 1\right) + 4 + 2z\overline{z}' + 2\overline{z}z'}{\left(|z|^{2} + 1\right)\left(|z'|^{2} + 1\right)} \end{split}$$

Further

$$2(|z|^{2}+1) + 2(|z'|^{2}+1) - 4 - 2z\overline{z}' - 2\overline{z}z'$$

$$= 2(|z|^{2}+|z'|^{2}-z\overline{z}'-\overline{z}z') = 2|z-z'|^{2}.$$

Hence

$$2(x_1x_1' + x_2x_2' + x_3x_3') = 2 - \frac{4|z - z'|^2}{(|z|^2 + 1)(|z'|^2 + 1)}.$$

• Since $d(z,z')^2 = 2 - 2(x_1x_1' + x_2x_2' + x_3x_3')$, we obtain

$$d(z,z')^{2} = \frac{4|z-z'|^{2}}{(|z|^{2}+1)(|z'|^{2}+1)}$$

Hence

$$d(z,z') = \frac{2|z-z'|}{\sqrt{(|z|^2+1)(|z'|^2+1)}}$$

• If $z' = \infty$. Then $x'_1 = 0, x'_2 = 0$ and $x'_3 = 1$ and

$$d(z,\infty)^2 = 2 - 2x_3 = 2 - 2\left(\frac{|z|^2 - 1}{|z|^2 + 1}\right) = \frac{4}{|z|^2 + 1}.$$

Hence

$$d(z,\infty)=\frac{2}{\sqrt{|z|^2+1}}.$$

- Thus \mathbb{C}_{∞} is a metric space.
- The above metric d induces the following topology on \mathbb{C}_{∞} :
 - Let $E \subseteq \mathbb{C}_{\infty}$.
 - If $\infty \notin E$, then E is open in \mathbb{C}_{∞} if and only if it is open in \mathbb{C} .
 - If $\infty \in E$, then E is open in \mathbb{C}_{∞} if and only its complement in \mathbb{C}_{∞} is a closed and bounded (i.e. compact) subset of \mathbb{C} .
- Finally, we check that f and f^{-1} are continuous to conclude the following result.

Theorem

The extended complex plane \mathbb{C}_{∞} is a metric space homeomorphic to the Riemann sphere \mathbb{S} . In particular, \mathbb{C}_{∞} is compact.

Functions on the complex plane

- Let $E \subseteq \mathbb{C}$ be a set of complex numbers. A function f defined on E is a rule that assigns to each z in E a **unique complex number** w.
- The number w is called the value of f at z and is denoted by f(z). The set E is called the domain of definition of f.
- Suppose w = u + iv is the value of a function f at z = x + iy, meaning

$$u+iv=f(x+iy).$$

- The real numbers u and v depend on the real variables x and y.
- Consequently, f(z) can be expressed as a pair of real-valued functions of the real variables x and y as follows:

$$f(z) = u(x, y) + iv(x, y).$$

• The functions u and v are usually denoted by $\operatorname{Re} f(z)$ and $\operatorname{Im} f(z)$ respectively.

Examples

- Consider the function $f(z) = z^2$. Then $f(x + iy) = x^2 y^2 + i2xy$. Therefore, we have Re $f(z) = x^2 y^2$ and Im f(z) = 2xy. The domain of f is the entire complex plane.
- Let us consider $f(z) = z^{1/n}$, where we assign to each complex number its *n*-th root. Then f is not a function in the sense of the definition above, since for each $z \neq 0$, there are n roots of z.
- Let us express z as $z=|z|(\cos\theta+i\sin\theta)$, where $\theta\in(-\pi,\pi]$ is the argument of z. Then the roots of z are given by

$$z_k = \sqrt[n]{|z|} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n-1.$$

- Clearly, for each $z \in \mathbb{C}$, we have n values of $z^{1/n}$ determined by k. In this case, we say that the n-th root has n branches. We can make $z^{1/n}$ a single-valued function by choosing a specific k.
- A branch corresponding to k = 0 is called the **principal branch**. Each branch is a single-valued function.

Continuity of complex functions

Definition

Let $E\subseteq\mathbb{C}$ and let $f:E\to\mathbb{C}$ be a function. We say that f is continuous at the point $z_0\in E$ if for every $\varepsilon>0$ there exists $\delta>0$ such that whenever $z\in E$ and $|z-z_0|<\delta$ then

$$|f(z)-f(z_0)|<\varepsilon.$$

An equivalent definition is that for every sequence $(z_n)_{n\in\mathbb{N}}\subset E$ such that $\lim_{n\to\infty}z_n=z_0$, then

$$\lim_{n\to\infty}f\left(z_{n}\right)=f\left(z_{0}\right).$$

- The function f is said to be continuous on E if it is continuous at every point of E.
- Sums and products of continuous functions are also continuous.
- The function f is continuous if and only if its real and imaginary parts are continuous.

Properties of continues functions

- Since the convergence notions for the complex numbers and points in \mathbb{R}^2 are the same, the function f of the complex argument z=x+iy is continuous if and only if it is continuous when viewed as a function of the two real variables x and y.
- By the triangle inequality, it is immediate that if f is continuous, then the real-valued function defined by $z \mapsto |f(z)|$ is continuous.
- We say that f attains a maximum at the point $z_0 \in E$ if

$$|f(z)| \le |f(z_0)|$$
 for all $z \in E$,

with the inequality reversed for the definition of a minimum.

Theorem

A continuous complex function on a compact set E is bounded and attains a maximum and minimum on E.

Examples

- The function $f(z) = z^2$ is continuous on \mathbb{C} , which can be easily shown using the definition of continuity.
- The principal branch of the square root function $z^{1/2}$ is continuous on $\mathbb{C} \setminus (-\infty, 0]$.
- Recall that

$$z_k = \sqrt{|z|} \left(\cos \frac{\theta + 2k\pi}{2} + i \sin \frac{\theta + 2k\pi}{2} \right), \quad k = 0, 1.$$

- This exclusion is necessary because for z = x + iy where $x \le 0$ and $y \to 0$ we may observe the following:
 - If $y \to 0^+$, then $arg(z) \to \pi$, leading to $z_0 \to i\sqrt{|x|}$.
 - If $y \to 0^-$, then $arg(z) \to -\pi$, leading to $z_0 \to -i\sqrt{|x|}$.
- We see that the principal branch $z^{1/2}$ exhibits discontinuity depending on the direction of approach along the imaginary axis.

Complex Differentiation

Definition

Suppose f is a complex function defined in open set $\Omega \subseteq \mathbb{C}$. If $z_0 \in \Omega$ and

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists, we denote this limit by $f'(z_0)$ and call it the derivative of f at z_0 .

- If the derivative $f'(z_0)$ exists for every $z_0 \in \Omega$, we say that f is **holomorphic** (or **analytic**) in Ω .
- ullet The class of all holomorphic functions in Ω will be denoted by $H(\Omega)$
- To be more explicit, the derivative $f'(z_0)$ exists if to every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f'\left(z_{0}\right)\right|<\varepsilon\quad\text{ for all }\quad z\in D'\left(z_{0},\delta\right).$$

ullet A function holomorphic in the whole ${\mathbb C}$ is called an **entire** function.

Properties of holomorphic functions

- If f ∈ H(Ω) and g ∈ H(Ω), then f + g ∈ H(Ω) and fg ∈ H(Ω), so that H(Ω) is a ring.
 Moreover, if f ∈ H(Ω) and g ∈ H(Ω) and additionally g is never 0 on
- Ω , then $f/g \in H(\Omega)$.

 The usual differentiation rules apply: for any $f \in H(\Omega)$ and $g \in H(\Omega)$
- The usual differentiation rules apply: for any $f \in H(\Omega)$ and $g \in H(\Omega)$ and $\alpha, \beta \in \mathbb{C}$ we have

$$(\alpha f + \beta g)' = \alpha f' + \beta g',$$

$$(fg)' = f'g + fg',$$

• If $f \in H(\Omega)$ and $g \in H(\Omega)$ and additionally g is never 0 on Ω , then

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

• More interestingly, superpositions of holomorphic functions are also holomorphic.

Properties of holomorphic functions

Lemma

If $f \in H(\Omega)$, $f(\Omega) \subseteq \Omega_1$, $g \in H(\Omega_1)$, and $h = g \circ f$, then $h \in H(\Omega)$, and h' can be computed using the chain rule:

$$h'(z_0)=g'(f(z_0))\cdot f'(z_0), \quad \text{ for } \quad z_0\in\Omega.$$

Proof: To prove this, fix $z_0 \in \Omega$, and put $w_0 = f(z_0)$. Then

$$f(z) - f(z_0) = [f'(z_0) + \varepsilon(z)](z - z_0),$$

 $g(w) - g(w_0) = [g'(w_0) + \eta(w)](w - w_0),$

where $\lim_{z\to z_0} \varepsilon(z) = 0$ and $\lim_{w\to w_0} \eta(w) = 0$. Put w = f(z), and substitute it to the last equation. If $z \neq z_0$, we obtain

$$\frac{h(z)-h(z_0)}{z-z_0}=\left[g'\left(f\left(z_0\right)\right)+\eta(f(z))\right]\left[f'\left(z_0\right)+\varepsilon(z)\right].$$

The differentiability of f forces f to be continuous at z_0 . Hence the conclusion follows from the last equation.

Properties of holomorphic functions

Theorem

Let g be analytic on the open set Ω_1 , and let f be a continuous complex-valued function on the open set Ω . Assume that

- (i) $f(\Omega) \subseteq \Omega_1$,
- (ii) g' is never 0,
- (iii) g(f(z)) = z for all $z \in \Omega$ (thus f is one-to-one).

Then f is analytic on Ω and $f' = 1/(g' \circ f)$.

Proof: Let $z_0 \in \Omega$, and let $(z_n)_{n \in \mathbb{N}} \subseteq \Omega \setminus \{z_0\}$ with $\lim_{n \to \infty} z_n = z_0$. Then

$$\frac{f(z_n) - f(z_0)}{z_n - z_0} = \frac{f(z_n) - f(z_0)}{g(f(z_n)) - g(f(z_0))} = \left[\frac{g(f(z_n)) - g(f(z_0))}{f(z_n) - f(z_0)}\right]^{-1}$$

(Note that $f(z_n) \neq f(z_0)$ since f is 1-1 and $z_n \neq z_0$.) By continuity of f at z_0 , the expression in brackets approaches $g'(f(z_0))$ as $n \to \infty$. Since $g'(f(z_0)) \neq 0$, the result follows.

Examples

• The function f(z) = z is holomorphic on any open set in \mathbb{C} , and f'(z) = 1. In fact, any polynomial

$$p(z) = a_0 + a_1 z + \cdots + a_n z^n$$

is holomorphic in the entire complex plane and

$$p'(z) = a_1 + 2a_2z + \cdots + na_nz^{n-1}.$$

- The function $\frac{1}{z}$ is holomorphic on any open set in $\mathbb C$ that does not contain the origin, and $f'(z) = -\frac{1}{z^2}$.
- The function $f(z) = \overline{z}$ is not holomorphic. Indeed, we have

$$\frac{f(z_0+h)-f(z_0)}{h}=\frac{\overline{h}}{h}$$

which has no limit as $h \to 0$, as one can see by first taking h real and then h purely imaginary.

Real differentiability

Definition

Suppose that $E \subseteq \mathbb{R}^n$ is open $F : E \to \mathbb{R}^m$, and $x \in E$. If there exists a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{|F(x+h) - F(x) - Ah|}{|h|} = 0,$$
 (*)

then we say that F is **differentiable** at x, and we write

$$A = F'(x)$$
.

If F is differentiable at every $x \in E$, we say that F is differentiable in E.

The relation (*) can be rewritten in the form

$$F(x+h) - F(x) = F'(x)h + r(h),$$
 and $\lim_{h\to 0} \frac{|r(h)|}{|h|} = 0.$ (**)

Real differentiability

• If $F = (F_1, \dots, F_m) : E \to \mathbb{R}^m$ and $F'(x_0)$ exists at $x_0 \in E$, then

$$F'(x_0) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x_0) & \dots & \frac{\partial F_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1}(x_0) & \dots & \frac{\partial F_m}{\partial x_n}(x_0) \end{bmatrix}.$$

- We know that if all the partial derivatives $\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_i}{\partial x_j}, \dots, \frac{\partial F_m}{\partial x_n}$ of F exist in a neighborhood of $x_0 \in E$ and they are continues at the point x_0 , then the function F is differentiable at x_0 .
- The converse is not true. Consider the example

$$F(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

The function F is not differentiable at the point (0,0), even though the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ exist at this point. However, these partial derivatives are not continuous at the origin.

Real differentiability

• Recall that the function $f(z) = \overline{z}$ is not holomorphic. Indeed, we have

$$\frac{f(z_0+h)-f(z_0)}{h}=\frac{\overline{h}}{h},$$

which has no limit as $h \to 0$, as one can see by first taking h real and then h purely imaginary.

- If the function $f(z) = \overline{z}$ is considered as a real variable function then it corresponds to the map F(x,y) = (x,-y), which is indefinitely differentiable in the real sense.
- This example illustrates that the existence of the real derivative need not guarantee that f is holomorphic.
- This example leads us to associate more generally to each complex valued function

$$f = u + iv$$

the mapping from $F: E \to \mathbb{R}^2$, given by

$$F(x, y) = (u(x, y), v(x, y)).$$

$$F(x,y) = (u(x,y),v(x,y))$$

• If m = n = 2 and $(x_0, y_0) \in E$ is fixed and $h = (h_1, h_2)$ and $|h| \to 0$, then the relation (**) can be rewritten in the form

$$u(x_0 + h_1, y_0 + h_2) - u(x_0, y_0) = \frac{\partial u}{\partial x}(x_0, y_0)h_1 + \frac{\partial u}{\partial y}(x_0, y_0)h_2 + r_1(h_1, h_2),$$

and

$$v(x_0 + h_1, y_0 + h_2) - v(x_0, y_0) = \frac{\partial v}{\partial x}(x_0, y_0)h_1 + \frac{\partial v}{\partial y}(x_0, y_0)h_2 + r_2(h_1, h_2),$$

where $r(h_1, h_2) = (r_1(h_1, h_2), r_2(h_1, h_2))$ and

$$\lim_{h \to 0} \frac{|r_1(h_1, h_2)|}{|h|} = 0, \quad \text{and} \quad \lim_{h \to 0} \frac{|r_2(h_1, h_2)|}{|h|} = 0.$$

Cauchy-Riemann equations

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and $f: \Omega \to \mathbb{C}$ be holomorphic. Then

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y},\tag{A}$$

where $\partial/\partial x$ and $\partial/\partial y$ denote the usual partial derivatives in the x and y variables respectively. If f=u+iv for some real valued functions $u,v:\Omega\to\mathbb{C}$, then we have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. (B)

These relations are called the **Cauchy–Riemann** equations.

Cauchy-Riemann equations

Proof: Fix $z_0 \in \Omega$. Since $f : \Omega \to \mathbb{C}$ is holomorphic, we have

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0). \tag{C}$$

- To find relation (A), observe that $z_0 = (x_0, y_0)$ can be approached from different directions.
- Firstly, with z of the form $(x_0 + h) + iy_0$ in (C), observe that

$$f'(z_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = \frac{\partial f}{\partial x}.$$

• Secondly, with z of the form $x_0 + i(y_0 + h)$ in (C), observe that

$$f'(z_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{ih} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

Cauchy-Riemann equations

Thus we obtain equation (A):

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

• If f = u + iv for some real valued functions $u, v : \Omega \to \mathbb{C}$, then

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$

This implies equations in (B):

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

• This completes the proof.

Cauchy-Riemann equations and holomorphicity

Theorem

Suppose f=u+iv is a complex-valued function defined on an open set Ω . If u and v are differentiable in the real sense and satisfy the Cauchy–Riemann equations on Ω , then f is holomorphic on Ω .

Proof: Fix $z_0 = x_0 + iy_0 \in \Omega$ and let $h = h_1 + ih_2$. Recall that

$$u(x_0 + h_1, y_0 + h_2) - u(x_0, y_0) = \frac{\partial u}{\partial x}(x_0, y_0)h_1 + \frac{\partial u}{\partial y}(x_0, y_0)h_2 + r_1(h_1, h_2),$$

and

$$v(x_0 + h_1, y_0 + h_2) - v(x_0, y_0) = \frac{\partial v}{\partial x}(x_0, y_0)h_1 + \frac{\partial v}{\partial y}(x_0, y_0)h_2 + r_2(h_1, h_2),$$

where

$$\lim_{h \to 0} \frac{|r_1(h_1, h_2)|}{|h|} = 0, \quad \text{ and } \quad \lim_{h \to 0} \frac{|r_2(h_1, h_2)|}{|h|} = 0.$$

Cauchy-Riemann equations and holomorphicity

Thus

$$f(z_0 + h) - f(z_0) = \frac{\partial u}{\partial x}(x_0, y_0)h_1 + \frac{\partial u}{\partial y}(x_0, y_0)h_2 + i\left(\frac{\partial v}{\partial x}(x_0, y_0)h_1 + \frac{\partial v}{\partial y}(x_0, y_0)h_2\right) + r(h),$$

where $r(h) = r_1(h_1, h_2) + ir_2(h_1, h_2)$. Clearly $\lim_{h\to 0} \frac{|r(h)|}{|h|} = 0$.

• By the Cauchy–Riemann equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, we find that

$$f(z_0+h)-f(z_0)=\left(\frac{\partial u}{\partial x}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0)\right)h+r(h).$$

Then

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0). \qquad \Box$$

Example

- Note that the hypothesis of real differentiability at the point z_0 is essential and cannot be dispensed with.
- For example, consider the function

$$f(x,y) = \sqrt{|xy|},$$

regarded as a complex function with imaginary part identically zero.

- Then it has both partial derivatives at $(x_0, y_0) = (0, 0)$.
- It moreover satisfies the Cauchy-Riemann equations at that point.
- But it is not differentiable in the real sense, and so the first condition, that of real differentiability, is not met.
- Therefore, this function is not complex differentiable.