Lecture 19 Dirichlet series

MATH 503, FALL 2025

November 13, 2025

Arithmetic functions

Definition

An **arithmetic function** is a map $f: \mathbb{Z}_+ \to \mathbb{C}$, i.e., a sequence of complex numbers, although this viewpoint is not very useful.

Examples of arithmetic functions

ullet The **constant 1** and the **identity** Id functions are defined by

$$\mathbf{1}(n) := 1$$
 and $\mathrm{Id}(n) := n$ for all $n \in \mathbb{Z}_+$.

• The **Dirac delta** function δ_m is defined as follows

$$\delta_m(n) = \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{otherwise.} \end{cases}$$

We shall abbreviate δ_1 to δ .

Examples of arithmetic functions

• The **divisor** function $\tau(n)$ is the number of positive divisors of $n \in \mathbb{Z}_+$,

$$\tau(n) := \#\{d \in \mathbb{Z}_+ : d \mid n\} = \sum_{d \mid n} 1.$$

Some authors also use the notation d(n) for the divisor function.

More generally, the sum of powers of divisors is defined by

$$\sigma_k(n) := \sum_{d|n} d^k$$
, where $k \in \mathbb{N}$.

Observe that $\tau(n) = \sigma_0(n)$, and we abbreviate σ_1 to σ .

• The **Euler totient function** φ is defined by

$$\varphi(n) := \#\{m \in [n] : (n, m) = 1\} = \sum_{m \in [n]} \delta((n, m)).$$

Here and throughout, we use the convention from combinatorics that $[N] := (0, N] \cap \mathbb{Z}_+$ for any real number N > 0.

Examples of arithmetic functions

- The function ω is defined as follows: $\omega(1) = 0$ and $\omega(n)$ counts the number of distinct prime factors of n for all $n \ge 2$.
- The function Ω is defined as follows: $\Omega(1) = 0$ and $\Omega(n)$ counts the number of prime factors of n with multiplicities for all $n \ge 2$.
- The **Liouville function** λ is defined as follows

$$\lambda(n) = (-1)^{\Omega(n)}.$$

• The **Möbius function** $\mu(n)$ is defined as follows

$$\mu(n) := \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes,} \\ 0 & \text{if } n \text{ is divisible by the square of a prime.} \end{cases}$$

Dirichlet convolutions

• The **von Mangoldt function** $\Lambda(n)$ is defined as follows

$$\Lambda(n) := \begin{cases} \log p & \text{if } n = p^k \text{ is a prime power,} \\ 0 & \text{otherwise.} \end{cases}$$

Sums and products of arithmetic functions are arithmetic functions:

$$(f+g)(n):=f(n)+g(n)$$
 and $(f\cdot g)(n):=f(n)\cdot g(n)$.

Definition

The **Dirichlet convolution** $f \star g$ is defined by

$$(f \star g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right),$$

where the sum is over all positive divisors d of n. Dirichlet convolution occurs frequently in multiplicative problems in elementary number theory.

Ring of arithmetic functions

Theorem

The set $\mathbb{A} := (\mathbb{A}, +, \star)$ of all complex-valued arithmetic functions, with addition + defined by pointwise sum and multiplication \star defined by Dirichlet convolution, is a commutative ring with additive identity 0 and multiplicative identity δ , which is the Dirac delta at 1. Furthermore, if $f(1) \neq 0$, then f is invertible.

Proof: Prove it!

Multiplicative functions

Definition

Let $f: \mathbb{Z}_+ \to \mathbb{C}$ be an arithmetic function.

• The function f is said to be **multiplicative** if $f(1) \neq 0$ and if, for all positive integers $m, n \in \mathbb{Z}_+$ such that (m, n) = 1, we have

$$f(mn) = f(m)f(n).$$

• The function f is **completely multiplicative** if $f(1) \neq 0$ and if the condition

$$f(mn) = f(m)f(n)$$

holds for all positive integers m and n.

• The function f is **strongly multiplicative** if f is multiplicative and if $f(p^{\alpha}) = f(p)$ for all prime powers p^{α} .

Multiplicative functions

Remark

- The condition $f(1) \neq 0$ is a convention to exclude the zero function from the set of multiplicative functions.
- Furthermore, it is easily seen that if f and g are multiplicative, then so are fg and f/g with $g \neq 0$ for the quotient.

Additive functions

Definition

Let $f: \mathbb{Z}_+ \to \mathbb{C}$ be an arithmetic function.

• The function f is said to be **additive** if for all positive integers $m, n \in \mathbb{Z}_+$ such that (m, n) = 1, we have

$$f(mn) = f(m) + f(n).$$

• The function f is **completely additive** if the condition

$$f(mn) = f(m) + f(n)$$

holds for all positive integers m and n.

• The function f is **strongly additive** if f is multiplicative and if $f(p^{\alpha}) = f(p)$ for all prime powers p^{α} .

Additive and multiplicative functions: simple criterium

Lemma

Let $f: \mathbb{Z}_+ \to \mathbb{C}$ be an arithmetic function.

(i) f is multiplicative if and only if f(1) = 1 and for all $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, where the p_i are distinct primes, we have

$$f(n) = \prod_{j \in [r]} f\left(p_j^{\alpha_j}\right).$$

(ii) f is additive if and only if f(1) = 0 and for all $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, where the p_i are distinct primes, we have

$$f(n) = \sum_{j \in [r]} f\left(p_j^{\alpha_j}\right).$$

Proof: Prove it!

Proof

Theorem

If $f,g:\mathbb{Z}_+ \to \mathbb{C}$ are multiplicative, then so is $f\star g$.

Proof: Let f and g be two multiplicative functions and let $m, n \in \mathbb{Z}_+$ be such that (m, n) = 1.

- Note that each divisor d of mn can be written uniquely in the form d = ab with $a \mid m$, and $b \mid n$ and (a, b) = 1.
- Hence,

$$(f \star g)(mn) = \sum_{d|mn} f(d)g\left(\frac{mn}{d}\right) = \sum_{a|m} \sum_{b|n} f(ab)g\left(\frac{mn}{ab}\right).$$

• Since f and g are multiplicative and (a, b) = (m/a, n/b) = 1, then

$$(f \star g)(mn) = \sum_{a \mid a} \sum_{b \mid a} f(a)f(b)g\left(\frac{m}{a}\right)g\left(\frac{n}{b}\right) = (f \star g)(m)(f \star g)(n)$$

as required.

Examples

- The functions 1, Id, δ are completely multiplicative.
- The functions log and Ω are strongly additive and consequently the function λ is completely multiplicative.
- Since $\tau = \mathbf{1} \star \mathbf{1}$, $\sigma = \mathbf{1} \star \operatorname{Id}$ and $\sigma_k = \mathbf{1} \star \operatorname{Id}^k$ and both $\mathbf{1}$ and Id are completely multiplicative, so are d, σ and σ_k .
- It is easily seen that, for all $m, n \in \mathbb{Z}_+$, we have

$$\omega(mn) = \omega(m) + \omega(n) - \omega(m, n),$$

since in the sum $\omega(m) + \omega(n)$, the prime factors of (m, n) have been counted twice. This implies the additivity of ω .

Möbius function is multiplicative

• The Möbius function $\mu(n)$ is multiplicative. Indeed, $\mu(1) = 1$ and for all prime powers p^{α} , we also have

$$\mu(p^{\alpha}) = egin{cases} -1, & ext{if } lpha = 1, \ 0, & ext{otherwise}. \end{cases}$$

• So that, if $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$ where the p_i are distinct primes, we have

$$\mu(p_1^{\alpha_1})\cdots\mu(p_r^{\alpha_r})= egin{cases} (-1)^r, & ext{if } lpha_1=\cdots=lpha_r=1, \ 0, & ext{otherwise}. \end{cases}$$

Hence $\mu(p_1^{\alpha_1})\cdots\mu(p_r^{\alpha_r})=\mu(n)$ as desired.

Properties of Möbius function

• We intend to prove the following identity $\mu \star \mathbf{1} = \delta$, i.e.

$$(\mu \star \mathbf{1})(n) = \sum_{d|n} \mu(d) = \delta(n) = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{if } n > 1. \end{cases}$$

- Now since μ and $\mathbf{1}$ are multiplicative, so is the function $\mu \star \mathbf{1}$ by the previous theorem and hence $(\mu \star \mathbf{1})(1) = 1 = \delta(1)$ is true for n = 1.
- Besides, it is sufficient to prove $\mu \star \mathbf{1} = \delta$ for prime powers by the previous lemma. Indeed,

$$(\mu \star \mathbf{1})(p^{\alpha}) = \sum_{j=0}^{\alpha} \mu(p^{j}) = \mu(1) + \mu(p) = 1 - 1 = 0 = \delta(p^{\alpha})$$

as asserted.

Möbius inversion formula

Theorem (Möbius inversion formula)

Let f and g be two arithmetic functions. Then we have

$$g = f \star \mathbf{1} \iff f = g \star \mu$$

Equivalently, by expanding Dirichlet's convolution, we have

$$g(n) = \sum_{d|n} f(d) \iff f(n) = \sum_{d|n} g(d) \mu\left(\frac{n}{d}\right)$$
 for all \mathbb{Z}_+ .

Proof: Using the identity $\mu \star \mathbf{1} = \delta$, we deduce

$$g = f \star \mathbf{1} \iff g \star \mu = f \star (\mathbf{1} \star \mu) = f.$$

This completes the proof.

Euler's totient function

- Euler's totient function is multiplicative and $\varphi = \mu \star \mathrm{Id}$.
- Moreover, we have

$$arphi\left(p^{lpha}
ight)=p^{lpha}-p^{lpha-1}=p^{lpha}\left(1-rac{1}{p}
ight),$$

and by the multiplicativity we obtain

$$\varphi(n) = n \prod_{\substack{p \mid n \\ p \in \mathbb{P}}} \left(1 - \frac{1}{p}\right).$$

Theorem

If both g and $f \star g$ are multiplicative, then f is also multiplicative.

Proof: Prove it!

Further properties of multiplicative functions

Theorem

If g is multiplicative, then so is g^{-1} , its Dirichlet inverse. In particular, the set of all multiplicative functions forms a multiplicative group with multiplication defined by the Dirichlet convolution.

Proof: Prove it!

Theorem

If f is multiplicative, then we have

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p)).$$

Proof: Prove it!

von Mangoldt function

 The von Mangoldt function is an example of a function that is neither multiplicative nor additive.

Lemma

For every $n \in \mathbb{Z}_+$ we have

$$(\Lambda \star \mathbf{1})(n) = \sum_{d|n} \Lambda(d) = \log n.$$

Proof: The theorem is true if n = 1 since both sides are 0.

• Therefore, assume that n > 1 and write $n = \prod_{i=1}^r p_i^{\alpha_i}$. Then

$$\log n = \sum_{i=1}^r \alpha_i \log p_i.$$

von Mangoldt function

• The only nonzero terms in the sum $\sum_{d|n} \Lambda(d)$ come from those divisors d of the form p_k^m for $m \in [a_k]$ and $k \in [r]$. Hence, we have

$$\sum_{d|n} \Lambda(d) = \sum_{i=1}^r \sum_{m=1}^{a_i} \Lambda(p_i^m) = \sum_{i=1}^r \sum_{m=1}^{a_i} \log p_i = \sum_{i=1}^r a_i \log p_i = \log n.$$

• This completes the proof.

Theorem

If $n \ge 2$, we have

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d} = -\sum_{d|n} \mu(d) \log d.$$

von Mangoldt function

Proof: We know that

$$(\Lambda \star \mathbf{1})(n) = \sum_{d|n} \Lambda(d) = \log n.$$

So inverting this formula by using the Möbius inversion formula, we obtain

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d} = \log n \sum_{d|n} \mu(d) - \sum_{d|n} \mu(d) \log d,$$

which simplifies to

$$\Lambda(n) = \delta(n) \log n - \sum_{d \mid n} \mu(d) \log d.$$

• Since $\delta(n) \log n = 0$ for all $n \in \mathbb{Z}_+$, the proof is complete.

Dirichlet series

In view of the multiplicative properties of certain arithmetic functions, we use Dirichlet series rather than power series in analytic number theory.

Definition

Let $f \in \mathbb{A}$ be an arithmetic function. The formal **Dirichlet series** of a variable $s \in \mathbb{C}$ associated to f is defined by

$$D(s,f):=\sum_{n=1}^{\infty}\frac{f(n)}{n^s}.$$

Here, we ignore convergence problems, and D(s, f) is the complex number equal to the sum when it converges.

• In analytic number theory, it is customary to express a complex number $s \in \mathbb{C}$ in the form

$$s = \sigma + it \in \mathbb{C}$$
.

Dirichlet series

Examples

- $D(s, \delta) = 1$.
- Presumably, the most important example of a Dirichlet series is the Riemann zeta function

$$D(s,\mathbf{1})=\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^{s}}.$$

Lemma

Let f, g and h be three arithmetic functions. Then

$$h = f \star g \iff D(s,h) = D(s,f) \cdot D(s,g).$$

Dirichlet series

Proof: We have

$$D(s,f)\cdot D(s,g) = \sum_{k,m=1}^{\infty} \frac{f(k)g(m)}{(km)^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{d|n} f(d)g\left(\frac{n}{d}\right) = \sum_{n=1}^{\infty} \frac{(f\star g)(n)}{n^s},$$

which completes the proof.

Remark

The set $\mathbb{D}:=(\mathbb{D},+,\cdot)$ of formal Dirichlet series with addition + and multiplication \cdot defined respectively by

$$D(s,f)+D(s,g)=D(s,f+g), \quad \text{ and } \quad D(s,f)\cdot D(s,g)=D(s,f\star g),$$

forms a commutative ring with additive identity 0 and multiplicative identity 1. Moreover, $\mathbb{D}:=(\mathbb{D},+,\cdot)$ is isomorphic to the ring of arithmetic functions $\mathbb{A}=(\mathbb{A},+,\star)$ via the mapping $\mathbb{A}\ni f\mapsto D(s,f)\in\mathbb{D}$.

Dirichlet series for multiplicative functions

Lemma

Let f be an arithmetic function. Then f is multiplicative if and only if

$$D(s,f) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} \frac{f\left(p^{k}\right)}{p^{sk}} \right).$$

The above product is called the Euler product of D(s, f).

Proof: Expanding the product we obtain a formal sum of all products of the form $\frac{f(p_1^{a_1})\cdots f(p_r^{a_r})}{(p_1^{a_1}\cdots p_r^{a_r})^s}$, where p_1,\ldots,p_r are distinct prime numbers, $a_1,\ldots,a_r\in\mathbb{Z}_+$, and $r\in\mathbb{N}$.

- By multiplicativity, the numerator can be written as $f(p_1^{a_1} \cdots p_r^{a_r})$.
- The Fundamental Theorem of Arithmetic implies that the products $p_1^{a_1} \cdots p_r^{a_r}$ are in one-to-one correspondence with all natural numbers.

This gives a formal proof of the desired identity.

Examples

• By the previous lemma $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \left(1 - \frac{1}{p^s}\right)^{-1}$, hence

$$\frac{1}{\zeta(s)} = \prod_{p \in \mathbb{P}} \left(1 - \frac{1}{p^s} \right) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s},$$

which implies $\mu \star \mathbf{1} = \delta$.

• Taking logarithm we obtain

$$\log \zeta(s) = \sum_{p \in \mathbb{P}} \log \left(1 - \frac{1}{p^s} \right)^{-1} = \sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{1}{kp^{ks}}.$$

By formal differentiation, we have

$$-\zeta'(s) = \sum_{n=1}^{\infty} \frac{\log n}{n^s}, \quad \text{and} \quad -\frac{\zeta'(s)}{\zeta(s)} = \sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{\log p}{p^{ks}} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

• Thus, $\Lambda = \mu \star \log$ and consequently $\Lambda \star \mathbf{1} = \log$.

Absolute convergence of Dirichlet series

Lemma

For each Dirichlet series D(s, f) with $s = \sigma + it \in \mathbb{C}$, there exists $\sigma_a \in \mathbb{R} \cup \{\pm \infty\}$, called the **abscissa of absolute convergence**, such that

- D(s, f) converges absolutely in the half-plane $\sigma > \sigma_a$;
- D(s, f) does not converge absolutely in the half-plane $\sigma < \sigma_a$.

Remarks

- In particular, the series D(s,f) defines an analytic function in the halfplane $\sigma > \sigma_a$. By abuse of notation, this function will be still denoted by D(s,f).
- If $|f(n)| \le \log n$, then the series D(s, f) is absolutely convergent in the half-plane $\sigma > 1$, and hence $\sigma_a \le 1$.

Absolute convergence of Dirichlet series

Remarks

- At $\sigma=\sigma_a$, the series may or may not converge absolutely. For instance, $\zeta(s)$ converges absolutely in the half-plane $\sigma>\sigma_a=1$, but does not converge on the line $\sigma=1$.
- On the other hand, the Dirichlet series associated to the function $f(n) = 1/(\log(en))^2$ has also $\sigma_a = 1$ for the abscissa of absolute convergence, but converges absolutely at $\sigma = 1$.

Proof: Let $S := \{ s \in \mathbb{C} : D(s, f) \text{ converges absolutely} \}$.

• If $S = \emptyset$, then put $\sigma_a = +\infty$. Otherwise define

$$\sigma_a := \inf \{ \sigma : s = \sigma + it \in S \}.$$

• D(s, f) does not converge absolutely if $\sigma < \sigma_a$ by the definition of σ_a .

Absolute convergence of Dirichlet series

• On the other hand, suppose that D(s, f) is absolutely convergent for some $s_0 = \sigma_0 + it_0 \in \mathbb{C}$ and let $s = \sigma + it$ be such that $\sigma \geqslant \sigma_0$. Since

$$\left|\frac{f(n)}{n^{s}}\right| = \left|\frac{f(n)}{n^{s_0}}\right| \times \frac{1}{n^{\sigma - \sigma_0}} \leqslant \left|\frac{f(n)}{n^{s_0}}\right|$$

we infer that D(s, f) converges absolutely at any point s with $\sigma \geqslant \sigma_0$.

• Now by the definition of σ_a , there exist points arbitrarily close to σ_a at which D(s, f) converges absolutely, and therefore by above D(s, f) converges absolutely at each point s such that $\sigma > \sigma_a$.

Simple criterium for absolute convergence

Lemma

Let $D(s, f) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series. Assume that

$$|f(n)| \leqslant Mn^{\alpha}$$
 for all $n \in \mathbb{Z}_+$,

for some $\alpha \geqslant 0$ and M > 0 independent of n.

- Then D(s, f) converges absolutely in the half-plane $\sigma > \alpha + 1$.
- In particular, $\sigma_a < \alpha + 1$.

Proof: Indeed, observe that

$$|D(s,f)| = \sum_{n=1}^{\infty} |f(n)n^{-s}| \le M \sum_{n=1}^{\infty} n^{-(\sigma-\alpha)} < \infty,$$

whenever $\sigma > \alpha + 1$, as desired.

Dirichlet series for products

Lemma

Let f,g be two arithmetic functions. If the Dirichlet series D(s,f) and D(s,g) are absolutely convergent at a point s_0 , then $D(s,f\star g)$ converges absolutely at s_0 and we have $D(s_0,f\star g)=D(s_0,f)D(s_0,g)$.

Proof: We have

$$D(s_0, f)D(s_0, g) = \sum_{n=1}^{\infty} \frac{f \star g(n)}{n^{s_0}} = D(s, f \star g),$$

where the rearrangement of the terms in the double sums is justified by the absolute convergence of the two series D(s, f) and D(s, g) at $s = s_0$.

• Then the absolute convergence of $D(s_0, f \star g)$ follows, as we have

$$\sum_{n=1}^{\infty} \left| \frac{f \star g(n)}{n^{s_0}} \right| \leqslant \left(\sum_{n=1}^{\infty} \left| \frac{f(n)}{n^{s_0}} \right| \right) \left(\sum_{n=1}^{\infty} \left| \frac{g(n)}{n^{s_0}} \right| \right). \quad \Box$$

Dirichlet series for inverses

Corollary

Let f be an arithmetic function such that $f(1) \neq 0$. Let f^{-1} be the convolution inverse of the fuction f, i.e. $f \star f^{-1} = \delta$. Then

$$D(s,f^{-1}) = \frac{1}{D(s,f)}$$

at every point s where D(s, f) and $D(s, f^{-1})$ converge absolutely.

Example

• The Möbius function satisfies $\mu^{-1} = 1$, hence for $\sigma > 1$, we have

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}.$$

• In particular, $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}$, since $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Partial summation

Theorem

Let $f, g : \mathbb{Z}_+ \to \mathbb{C}$ be arithmetic functions. Let $F(x) := \sum_{1 \le n \le x} f(n)$.

• Then for any $a, b \in \mathbb{N}$ with a < b, we have

$$\sum_{n=a+1}^{b} f(n)g(n) = F(b)g(b) - F(a)g(a+1) - \sum_{n=a+1}^{b-1} F(n)(g(n+1) - g(n)).$$

• Let $x, y \in \mathbb{R}_+$ with $\lfloor y \rfloor < \lfloor x \rfloor$, and let $g \in C^1([y, x])$. Then

$$\sum_{y< n\leq x} f(n)g(n) = F(x)g(x) - F(y)g(y) - \int_{y}^{x} F(t)g'(t)dt$$

• In particular, if $x \ge 2$ and $g \in C^1([1,x])$, then

$$\sum_{n\leq x} f(n)g(n) = F(x)g(x) - \int_1^x F(t)g'(t)dt.$$

Quantitative estimates

Lemma

Let $D(s, f) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series. Assume that

$$\Big|\sum_{x < n \leqslant y} f(n)\Big| \leqslant My^{\alpha} \quad \text{ for all } \quad 0 < x < y,$$

for some $\alpha \geqslant 0$ and M > 0 independent of x and y.

- Then D(s, f) converges in the half-plane $\sigma > \alpha$.
- Furthermore, we have in this half-plane

$$|D(s,f)| \leqslant \frac{M|s|}{\sigma - \alpha}, \quad \text{ and } \quad \left| \sum_{x < n \leqslant y} \frac{f(n)}{n^s} \right| \leqslant \frac{M}{x^{\sigma - \alpha}} \left(\frac{|s|}{\sigma - \alpha} + 1 \right).$$

• The latter statement ensures that D(s, f) converges uniformly in any compact subset of the half plane $\sigma > \alpha$.

Quantitative estimates

Proof: Set $A(x) = \sum_{1 \le n \le x} f(n)$ and S(x, y) = A(y) - A(x).

• By partial summation we have

$$\sum_{x < n \leqslant y} \frac{f(n)}{n^s} = \frac{S(x,y)}{y^s} + s \int_x^y \frac{S(x,u)}{u^{s+1}} du.$$

- By hypothesis we have $|S(x,y)/y^s| \leq My^{\alpha-\sigma}$, so that $S(x,y)/y^s$ tends to 0 as $y \to \infty$ in the half-plane $\sigma > \alpha$.
- Therefore if one of

$$D(s, f) = \sum_{n \in \mathbb{N}} \frac{f(n)}{n^s}, \quad \text{or} \quad s \int_1^\infty \frac{A(u)}{u^{s+1}} du.$$

converges, then so does the other, and the two quantities converge to the same limit.

Quantitative estimates

But since

$$\left|\frac{A(u)}{u^{s+1}}\right| \leqslant \frac{M}{u^{\sigma-\alpha+1}},$$

we infer that the integral converges absolutely for $\sigma > \alpha$, and hence D(s, f) is convergent in this half-plane.

• Therefore for all $\sigma > \alpha$, we obtain

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = s \int_1^{\infty} \frac{A(u)}{u^{s+1}} du,$$

and hence

$$|D(s,f)| \leqslant M|s| \int_1^\infty \frac{du}{u^{\sigma-\alpha+1}} = \frac{M|s|}{\sigma-\alpha}.$$

Similarly

$$\Big|\sum_{x < n \le y} \frac{f(n)}{n^s}\Big| \leqslant \frac{M}{y^{\sigma - \alpha}} + M|s| \int_x^\infty \frac{du}{u^{\sigma - \alpha + 1}} \leqslant \frac{M}{x^{\sigma - \alpha}} \left(\frac{|s|}{\sigma - \alpha} + 1\right)$$

as required.

Conditional convergence of Dirichlet series

Lemma

For each Dirichlet series D(s,f), there exists $\sigma_c \in \mathbb{R} \cup \{\pm \infty\}$, called the **abscissa of convergence**, such that D(s,f) converges in the half-plane $\sigma > \sigma_c$ and does not converge in the half-plane $\sigma < \sigma_c$. Furthermore,

$$\sigma_c \leqslant \sigma_a \leqslant \sigma_c + 1.$$

Proof: Suppose first that D(s,f) converges at a point $s_0 = \sigma_0 + it_0$ and fix a small real number $\varepsilon > 0$. By Cauchy's theorem, there exists $x_{\varepsilon} \geqslant 1$ such that, for all $y > x \geqslant x_{\varepsilon}$, we have

$$\left|\sum_{x< n\leqslant y}\frac{f(n)}{n^{s_0}}\right|\leqslant \varepsilon.$$

Conditional convergence of Dirichlet series

• Let $s = \sigma + it \in \mathbb{C}$ such that $\sigma > \sigma_0$. Using the previous lemma with s replaced by $s - s_0$ and $\alpha = 0$, we obtain

$$\left|\sum_{x< n\leqslant y} \frac{f(n)}{n^s}\right| \leqslant \varepsilon \left(\frac{|s-s_0|}{\sigma-\sigma_0}+1\right).$$

so that D(s, f) converges by Cauchy's theorem.

• Now we may proceed as before. Let

$$S := \{ s \in \mathbb{C} : D(s, f) \text{ converges} \}.$$

• If $S = \emptyset$, then we put $\sigma_c = +\infty$. Otherwise define

$$\sigma_c := \inf \{ \sigma : s = \sigma + it \in S \}.$$

• D(s, f) does not converge if $\sigma < \sigma_c$ by the definition of σ_c .

Conditional convergence of Dirichlet series

- On the other hand, there exist points s_0 with σ_0 being arbitrarily close to σ_c at which D(s,f) converges.
- By above, D(s, f) converges at any point s such that $\sigma > \sigma_0$. Since σ_0 may be chosen as close to σ_c as we want, it follows that D(s, f) converges at any point s such that $\sigma > \sigma_c$.
- The inequality $\sigma_c \leqslant \sigma_a \leqslant \sigma_c + 1$ remains to be shown.
- The lower bound is obvious. For the upper bound, it suffices to show that if $D(s_0, f)$ converges for some s_0 , then it converges absolutely for all s such that $\sigma > \sigma_0 + 1$. Now if D(s, f) converges at some point s_0 , then

$$\lim_{n\to\infty}f(n)n^{-s_0}=0.$$

• Thus there exists a positive integer n_0 such that, for all $n \ge n_0$, we have $|f(n)| \le n^{\sigma_0}$, hence D(s, f) is absolutely convergent in the half-plane $\sigma > \sigma_0 + 1$ as required.

Dirichlet series are holomorphic

Theorem

A Dirichlet series $D(s,f) = \sum_{n=1}^{\infty} f(n) n^{-s}$ defines a holomorphic function of the variable s in the half-plane $\sigma > \sigma_c$, in which D(s,f) can be differentiated term by term so that, for all $s = \sigma + it$ with $\sigma > \sigma_c$, we have

$$\partial_s^k D(s, f) = \sum_{n=1}^{\infty} \frac{(-1)^k (\log n)^k f(n)}{n^s}, \quad \text{ for } \quad k \in \mathbb{Z}_+.$$

Proof: The partial sums of a Dirichlet series is a holomorphic function of the variable s that converges uniformly on any compact subset of the half-plane $\sigma > \sigma_c$. Hence, D(s, f) must be holomorphic in that region.

• Consequently, term-by-term differentiation is allowed, and since $n^{-s} = e^{-s \log n}$, then

$$\partial_s^k n^{-s} = (-1)^k (\log n)^k n^{-s}.$$

Dirichlet series are determined uniquely

Lemma

Let $D(s, f) = \sum_{n=1}^{\infty} f(n) n^{-s}$ be a Dirichlet series with abscissa of convergence σ_c .

- If D(s,f)=0 for all s such that $\sigma>\sigma_c$, then f(n)=0 for all $n\in\mathbb{Z}_+$.
- In particular, if D(s, f) = D(s, f) for all s such that $\sigma > \sigma_c$, then f(n) = g(n) for all $n \in \mathbb{Z}_+$.

Proof: Suppose the contrary and let $k \in \mathbb{Z}_+$ be the smallest integer such that $f(k) \neq 0$. Then

$$D(s,f) = \sum_{n=k}^{\infty} f(n)n^{-s} = 0$$

for all s such that $\sigma > \sigma_c$. Then we have

$$G(s) = ks D(s, f) = ks \sum_{n=1}^{\infty} \frac{f(n)}{ns} = 0.$$

Dirichlet series are determined uniquely

• Therefore, for all s such that $\sigma > \sigma_c$ we have

$$G(s) = f(k) + \sum_{n=k+1}^{\infty} f(n) \left(\frac{k}{n}\right)^{s} = 0.$$

Hence

$$0=\lim_{\sigma\to\infty}G(\sigma)=f(k)\neq0,$$

which is impossible.

Theorem (Landau)

If $f(n) \geqslant 0$ for all $n \in \mathbb{Z}_+$, and $D(s,f) = \sum_{n=1}^{\infty} f(n) n^{-s}$ is a Dirichlet series with abscissa of convergence $\sigma_c \in \mathbb{R}$, then D(s,f) has a singularity at $s = \sigma_c$.

Singularity on the axis of convergence

Proof: We may assume that $\sigma_c = 0$ and $|D(0, f)| < \infty$.

• By the Taylor expansion of D(s, f) about a > 0 we have

$$D(s,f) = \sum_{k=0}^{\infty} \frac{(s-a)^k}{k!} \partial_s^k D(a,f) = \sum_{k=0}^{\infty} \frac{(s-a)^k}{k!} \sum_{n=1}^{\infty} \frac{(-1)^k (\log n)^k f(n)}{n^a},$$

which must converge at some s = b < 0. Hence

$$0 \leq \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{((a-b)\log n)^k f(n)}{n^a k!} < \infty.$$

Each term is nonnegative, so the order of summation may be changed

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^a} \sum_{k=0}^{\infty} \frac{((a-b)\log n)^k}{k!} = \sum_{n=1}^{\infty} \frac{f(n)}{n^b} = \infty,$$

since $b < 0 = \sigma_c$, giving a contradiction.

42 / 45

Series of multiplicative functions

Theorem

Let f be a multiplicative function satisfying

$$\sum_{p\in\mathbb{P}}\sum_{k=1}^{\infty}|f(p^k)|<\infty.$$

Then the series $\sum_{n\geq 1} f(n)$ is absolutely convergent and we have

$$\sum_{n=1}^{\infty} f(n) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} f\left(p^{k}\right) \right).$$

Proof: Let us first notice that the inequality $\sum_{p\in\mathbb{P}}\sum_{k=1}^{\infty}|f(p^k)|<\infty$ implies the convergence of the product

$$\prod_{p\in\mathbb{P}}\left(1+\sum_{k=1}^{\infty}\left|f\left(p^{k}\right)\right|\right)\leq\exp\left(\sum_{p\in\mathbb{P}}\sum_{k=1}^{\infty}\left|f(p^{k})\right|\right)<\infty.$$

Series of multiplicative functions

- Now let $x \ge 2$ and set $P(x) = \prod_{p \in \mathbb{P}_{<x}} (1 + \sum_{k=1}^{\infty} |f(p^k)|)$.
- The convergence of the series $\sum_{k=1}^{\infty} |f(p^k)|$ enables us to rearrange the terms when we expand P(x), hence

$$P(x) = \sum_{\gcd(n) \le x} |f(n)|,$$

where gpf(1) = 1 and gpf(n) is the greatest prime factor of $n \ge 2$.

• Since each integer $n \le x$ satisfies the condition $gpf(n) \le x$, we have

$$\sum_{1 \le n \leqslant x} |f(n)| \leqslant P(x)$$

• Since P(x) has a finite limit as $x \to \infty$, the above inequality implies that $\sum_{n\geqslant 1} |f(n)| < \infty$. The second part of the theorem follows from

$$\left| \sum_{n=1}^{\infty} f(n) - \prod_{p \in \mathbb{P}_{ x} |f(n)|,$$

and the fact that the right-hand side tends to 0 as $x \to \infty$.

Multiplication of Dirichlet series

Theorem

Let f be a multiplicative function and let $s_0 \in \mathbb{C}$. Then the three following assertions are equivalent.

(i) One has

$$\sum_{p\in\mathbb{P}}\sum_{k=1}^{\infty}\frac{|f(p^k)|}{p^{s_0k}}<\infty.$$

- (ii) The series D(s, f) is absolutely convergent in the half-plane $\sigma > \sigma_0$.
- (iii) The product

$$\prod_{p\in\mathbb{P}}\left(1+\sum_{k=1}^{\infty}rac{f(p^k)}{p^{sk}}
ight)$$

is absolutely convergent in the half-plane $\sigma>\sigma_0$. If one of these conditions holds, then we have for all $\sigma>\sigma_0$ (in particular for all $\sigma>\sigma_a$) that

$$D(s, f) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} \frac{f(p^k)}{p^{sk}} \right).$$