Lecture 16

Harmonic functions

MATH 503, FALL 2025

October 30, 2025

Cauchy-Riemann equations

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and $f: \Omega \to \mathbb{C}$ be holomorphic. Then $\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$, where $\partial/\partial x$ and $\partial/\partial y$ denote the usual partial derivatives in the x and y variables respectively. If f = u + iv for some real valued functions $u, v: \Omega \to \mathbb{C}$, then we have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. (C-R)

These relations are called the **Cauchy–Riemann** equations.

Theorem

Suppose f=u+iv is a complex-valued function defined on an open set Ω . If u and v are differentiable in the real sense and satisfy the Cauchy–Riemann equations (C-R) on Ω , then f is holomorphic on Ω .

Definition

Let $(x_0, y_0) \in \mathbb{R}^2$ and u be a real-valued function defined in a neighbourhood of (x_0, y_0) . Then u is **harmonic** at (x_0, y_0) if

- (i) u is continuous at (x_0, y_0) .
- (ii) u has continuous partial derivatives of the first and the second order at (x_0, y_0) satisfying

$$u_{xx}(x_0, y_0) + u_{yy}(x_0, y_0) = 0,$$
 (*)

where $u_{xy}\left(x_{0},y_{0}\right)=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\left(x_{0},y_{0}\right)\right)$.

• The (*) is called **the Laplace equation**. Further u is called harmonic in Ω if it is harmonic at every point of Ω .

Remark

- (i) We identify the elements (x, y) of \mathbb{R}^2 with x + iy of \mathbb{C} and it will be clear from the context whether we are taking (x, y) or x + iy.
- (ii) For any $z=x+iy\in\mathbb{C}$ and any real-valued function u=u(x,y) we write

$$u(z)=u(x,y).$$

(iii) If u is harmonic in Ω , then u + c for any constant c is harmonic in Ω .

Theorem

Let $f \in H(\Omega)$ be given by

$$f(z) = u(x, y) + iv(x, y).$$

Then Re(f) and Im(f) are harmonic in Ω .

Proof: The proof depends on $f' \in H(\Omega)$ and $f'' \in H(\Omega)$.

- Let f(z) = u(x, y) + iv(x, y) be given. First, we prove that u and v have continuous partial derivatives of orders 0, 1 and 2 at every point of Ω . We prove the assertion for u and the proof for v is similar.
- Let $(x_0, y_0) \in \Omega$ and $z_0 = x_0 + iy_0$. Then we see that u is continuous at (x_0, y_0) since f is continuous at z_0 .
- Further, by the Cauchy–Riemann equations, we have

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0).$$

• By differentiating this identity, we have u_x and u_y that are continuous at (x_0, y_0) since f'(z) is continuous at z_0 . Next, we have

$$f''(z_0) = u_{xx}(x_0, y_0) + iv_{xx}(x_0, y_0) = v_{yx}(x_0, y_0) - iu_{yx}(x_0, y_0)$$

= $v_{xy}(x_0, y_0) - iu_{xy}(x_0, y_0) = -u_{yy}(x_0, y_0) - iv_{yy}(x_0, y_0)$.

- This implies u has continuous partial derivative of order 2 at (x_0, y_0) , since f''(z) is continuous at z_0 .
- Since (x_0, y_0) is an arbitrary point of Ω , we conclude that u has continuous partial derivatives of order 0, 1 and 2 at every point of Ω .
- Differentiating the first (C-R) equation $u_x = v_y$ with respect to x and the second $v_x = -u_y$ with respect to y, we obtain

$$u_{xx}(x_0, y_0) = v_{yx}(x_0, y_0), \quad v_{xy}(x_0, y_0) = -u_{yy}(x_0, y_0),$$

which implies

$$u_{xx}(x_0, y_0) + v_{yy}(x_0, y_0) = 0,$$

since $v_{vx}(x_0, y_0) = v_{xv}(x_0, y_0)$. Hence u is harmonic in Ω .

Identity theorem for harmonic functions

Theorem

Let u be harmonic in a region Ω and let V be a non-empty open subset of Ω such that u=0 in V. Then u=0 in Ω .

Proof: Let u be harmonic in Ω . For $z \in \Omega$ with z = x + iy, we consider

$$g(z) = u_x(x, y) - iu_y(x, y).$$

- We observe that u_x and $-u_y$ are defined in Ω and they satisfy Cauchy–Riemann equations in Ω since u is harmonic in Ω .
- Therefore, g is holomorphic in Ω .
- Further, g = 0 on V, since u_x and $-u_y$ vanish on V. Then g = 0 on Ω by identity theorem for holomorphic functions.
- Then $u_x = u_y = 0$ in Ω which implies that u is constant in Ω .

Definition

Let u be harmonic in a region Ω . Then v is called a **harmonic conjugate** of u in Ω if

- (i) v is harmonic in Ω .
- (ii) There exists $f \in H(\Omega)$ such that

$$f = u + iv$$
 in Ω .

Remark

• Let u be harmonic in a region Ω . Assume that v and v_1 are harmonic conjugates of u in Ω . Then there exist $f \in H(\Omega)$ and $f_1 \in H(\Omega)$ such that

$$f = u + iv$$
, $f_1 = u + iv_1$ in Ω .

• Then $v - v_1 = -i(f - f_1) \in H(\Omega)$ is real valued. Therefore v and v_1 differ by a constant. Why?

Remark

• Let f be integrable on [a, b] and

$$F(x) = \int_a^x f(t)dt$$
 for $a \le x \le b$.

Then F(x) is continuous in [a, b]. If f is continuous at $x_0 \in [a, b]$, then

$$F'(x_0) = f(x_0)$$
.

• Let f be integrable on [a, b]. If there exists a differentiable function F on [a, b] such that F' = f. Then

$$\int_a^b f(t)dt = F(b) - F(a).$$

Theorem

Let $\Omega = D(0,R)$ where $0 < R \le \infty$. Let u be harmonic in Ω . Then there exists a harmonic conjugate of u in Ω .

Proof: It suffices to find a real-valued function v = v(x, y) satisfying:

- (i) v has continuous partial derivatives at every point of Ω .
- (ii) u and v satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
 and $u_y = -v_x$

at every point of Ω .

• Then $f = u + iv \in H(\Omega)$. Now we see from the previous theorem that v will be a harmonic conjugate of u in Ω .

• For $(x, t) \in \Omega$, by the first equation in (ii), we have

$$u_{\mathsf{x}}(\mathsf{x},t)=\mathsf{v}_{\mathsf{y}}(\mathsf{x},t).$$

 We integrate both sides with respect to t along a vertical line from 0 to y. We have

$$\int_0^y v_y(x,t)dt = \int_0^y u_x(x,t)dt.$$

Thus

$$v(x,y)-v(x,0)=\int_0^y u_x(x,t)dt.$$

• By putting v(x,0) = h(x), we have

$$v(x,y) = \int_0^y u_x(x,t)dt + h(x).$$

• We determine h(x) such that the second equation in (ii) is satisfied.

• By substituting v(x, y) in the second equation in (ii), we have

$$\begin{split} u_{y}(x,y) &= -\frac{\partial}{\partial x} \int_{0}^{y} u_{x}(x,t)dt - h'(x) = -\int_{0}^{y} u_{xx}(x,t)dt - h'(x) \\ &= \int_{0}^{y} u_{yy}(x,t)dt - h'(x) = u_{y}(x,y) - u_{y}(x,0) - h'(x). \end{split}$$

• Therefore, $h'(x) = -u_y(x,0)$, which is satisfied if

$$h(x) = -\int_0^x u_y(s,0)ds + C,$$

where C is any constant. Then

$$v(x,y) = \int_0^y u_x(x,t)dt - \int_0^x u_y(s,0)ds + C.$$

• We check that v satisfies (i) and (ii) and hence v is a harmonic conjugate of u in Ω .

Theorem

A region Ω is simply connected if and only if every harmonic function in Ω has a harmonic conjugate in Ω .

Lemma

Let u = u(x, y) and v = v(x, y) be harmonic function in a region Ω . For $(x, y) \in \Omega$, let

$$R = R(x, y) = \frac{1}{2} \log ((u(x, y))^2 + (v(x, y))^2).$$

Then R is harmonic in Ω .

Proof: It is clear that R is continuous and it has continuous partial derivatives of orders 1 and 2 at every point of Ω .

• We show that R satisfies the Laplace equation at every point of Ω .

• At $(x, y) \in \Omega$, we have

$$R_{x} = \frac{uu_{x} + vv_{x}}{u^{2} + v^{2}}, \quad R_{y} = \frac{uu_{y} + vv_{y}}{u^{2} + v^{2}},$$

and

$$(u^{2} + v^{2})^{2} (R_{xx} + R_{yy}) = (u^{2} + v^{2}) (u_{x}^{2} + v_{x}^{2} + u_{y}^{2} + v_{y}^{2})$$

$$- 2 (uu_{x} + vv_{x})^{2} - 2 (uu_{y} + vv_{y})^{2},$$

by using $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$.

Simplifying, we obtain

$$(u^{2} + v^{2})^{2} (R_{xx} + R_{yy}) = u^{2}v_{x}^{2} + u^{2}v_{y}^{2} + v^{2}u_{x}^{2} + v^{2}u_{y}^{2}$$
$$- (u^{2}u_{y}^{2} + u^{2}u_{x}^{2} + v^{2}v_{y}^{2} + v^{2}u_{x}^{2})$$
$$- 2uvu_{x}u_{y} - 2uvv_{x}v_{y} = 0$$

by using the Cauchy-Riemann equations.

Lemma

Let $\Omega = \mathbb{C} \setminus \{0\}$. For $z \in \Omega$ with z = x + iy, let

$$u(x,y) = \log |z| = \frac{1}{2} \log (x^2 + y^2).$$

Then u is harmonic in Ω .

Proof: We observe that u is continuous in Ω where it has continuous partial derivatives of orders 1 and 2, since

$$u_x = \frac{x}{x^2 + y^2}, \quad u_y = \frac{y}{x^2 + y^2}$$

and

$$u_{xx} = \frac{y^2 - x^2}{(x^2 + y^2)^2}, \quad u_{yy} = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

The latter equation implies that u is harmonic in Ω .

Lemma

Let D_1 and Ω_1 be open discs. Let F be holomorphic function from D_1 into Ω_1 and u be harmonic in Ω_1 . Then $u \circ F$ is harmonic in D_1 .

Proof: Let
$$F(z) = A(x, y) + iB(x, y)$$
 for $z = x + iy \in D_1$.

• Since u is harmonic in Ω_1 and D_1 is a disc, then there exists $G \in H(\Omega_1)$ such that

$$G(z) = \phi(x,y) + i\psi(x,y) \quad \text{for} \quad z = x + iy \in \Omega_1,$$
 where $\phi(x,y) = u(x,y)$. Then, for $z = x + iy \in D_1$, we have
$$G \circ F(z) = G(A(x,y) + iB(x,y))$$
$$= \phi(A(x,y), B(x,y)) + i\psi(A(x,y), B(x,y))$$
$$= u(A(x,y), B(x,y)) + i\psi(A(x,y), B(x,y)),$$

and $Re(G \circ F(z)) = u(A(x, y), B(x, y)) = u \circ F(z)$. Now we conclude that $u \circ F$ is harmonic in D_1 and we are done.

Theorem

A region Ω is simply connected if and only if every harmonic function in Ω has a harmonic conjugate in Ω .

Proof: Assume that Ω is simply connected and let u be harmonic in Ω . We show that u has a harmonic conjugate in Ω .

- We may assume that $\Omega \neq \mathbb{C}$ otherwise the assertion follows from the previous theorem.
- Then, by the Riemann mapping theorem, there exists an analytic homeomorphism F from D onto Ω .
- In the previous lemma, we take $D_1 = D(z_0, s)$, $\Omega_1 = D(F(z_0), r)$ and F is holomorphic function from D_1 into Ω_1 . Since $\Omega_1 \subseteq \Omega$, we see that u is harmonic in Ω_1 . Let $u \circ F = u_1$.

• Let $z_0 \in D$. Then $F(z_0) \in \Omega$ and there exist 0 < s < r < 1 such that

$$F\left(D\left(z_{0},s\right)\right)\subseteq D\left(F\left(z_{0}\right),r\right)\subseteq\Omega.$$

- Then u_1 is harmonic in D_1 by the previous lemma. In particular, u_1 is harmonic at z_0 .
- Since z_0 is an arbitrary point of D, we see that u_1 is harmonic in D. Hence, there exist v_1 harmonic in D and $f_1 \in H(D)$ such that

$$f_1 = u_1 + iv_1$$
 in D .

Then

$$f_1 \circ F^{-1} = u + iv_1 \circ F^{-1}$$
 in Ω ,

and $f_1 \circ F^{-1} \in H(\Omega)$. Hence, we conclude that $v_1 \circ F^{-1}$ is harmonic conjugate of u in Ω .

- Now, let Ω be a region and assume that every harmonic function in Ω has a harmonic conjugate in Ω . We show that Ω is simply connected.
- We may assume that $\Omega \neq \mathbb{C}$ otherwise the assertion follows since \mathbb{C} is simply connected.
- It suffices to show that for every $f \in H(\Omega)$ with $\frac{1}{f} \in H(\Omega)$, there exists $g \in H(\Omega)$ such that $f(z) = g^2(z)$ for $z \in \Omega$. Then Ω is conformally equivalent to D. Hence Ω is simply connected as desired.
- Let $f \in H(\Omega)$ with $\frac{1}{f} \in H(\Omega)$. We set

$$Re(f) = u$$
, $Im(f) = v$.

• Then u and v are harmonic in Ω . For $x + iy \in \Omega$, we set

$$R(x,y) = \log |f(x+iy)| = \frac{1}{2} \log ((u(x,y))^2 + (v(x,y))^2),$$

which is defined since $f(z) \neq 0$ for $z \in \Omega$.

• R(x, y) is harmonic in Ω as it was shown above.

• Then, by our assumption, there exists a harmonic function S in Ω and $g_1 \in H(\Omega)$ such that

$$g_1 = R + iS$$
 in Ω .

Let

$$h(z) = e^{g_1(z)}$$
 for $z \in \Omega$.

• Then $\frac{f(z)}{h(z)} \in H(\Omega)$ and

$$\left| \frac{f(z)}{h(z)} \right| = 1$$
 for $z \in \Omega$.

- Therefore $\frac{f(z)}{h(z)}$ is constant in Ω by the open mapping theorem.
- Then $f(z) = ce^{g_1(z)} = e^{g_1(z)+c_1}$, where c and c_1 are constants.
- By putting

$$g(z)=e^{\frac{g_1(z)+c_1}{2}},$$

we see that $g(z) \in H(\Omega)$ and $f(z) = (g(z))^2$ for $z \in \Omega$.

Mean Value Property (MVP) of harmonic functions

Definition

Let u be real-valued continuous function in a region Ω . Then u has **mean** value property (MVP) in Ω if for every $a \in \Omega$, we have

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u\left(a + re^{i\theta}\right) d\theta,$$

whenever $\overline{D}(a, r) \subseteq \Omega$.

Theorem

Let u be harmonic in a region Ω . Then u satisfies MVP in Ω .

Proof Let $a \in \Omega$ with $\overline{D}(a, r) \subseteq \Omega$. There exists an open disc E such that

$$\overline{D}(a,r)\subseteq E\subseteq \Omega$$

and u has a harmonic conjugate in E.

Mean Value Property (MVP) of harmonic functions

• Therefore there exists $f \in H(E)$ such that u = Re(f). Now

$$f(a) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{z-a} dz$$

by the Cauchy integral formula.

• By putting $z - a = re^{i\theta}$ with $0 \le \theta \le 2\pi$, we have

$$f(a) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f\left(a + re^{i\theta}\right) ire^{i\theta}}{re^{i\theta}} d\theta = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{i\theta}\right) d\theta.$$

By comparing the real parts on both the sides, we obtain

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u\left(a + re^{i\theta}\right) d\theta.$$

22 / 40

• This holds for every $a \in \Omega$ whenever $\overline{D}(a, r) \subseteq \Omega$.

Maximum principle for the continuous functions with MVP

Theorem

Let u be real-valued continuous function in a region Ω and assume that u has MVP in Ω . Suppose that there exists $a \in \Omega$ such that

$$u(z) \le u(a)$$
 for all $z \in \Omega$.

Then u is constant in Ω .

Proof: We assume that u is not constant in Ω . Let u be continuous in a region satisfying MVP in Ω and there exists $a \in \Omega$ such that $u(z) \leq u(a)$ for $z \in \Omega$. We consider

$$A = \{z \in \Omega : u(z) = u(a)\}.$$

- We may assume that $A \neq \emptyset$, since $a \in A$. It suffices to show that A is both open and closed.
- Then $A = \Omega$, since Ω is connected and hence u is constant in Ω .

Maximum principle for the continuous functions with MVP

- Let $z \in \overline{A}$. Then there exists a sequence $(z_n)_{n \in \mathbb{N}} \subseteq A$ such that $\lim_{n \to \infty} z_n = z$. Since u is continuous, we have $\lim_{n \to \infty} u(z_n) = u(z)$. But $u(z_n) = a$ for $n \ge 1$ since $z_n \in A$. Therefore u(z) = u(a) which implies that $z \in A$. Thus $\overline{A} \subseteq A$ and hence A is closed.
- Now we show that A is open. Let $z_0 \in A$ and there exists r > 0 with $D(z_0, r) \subseteq \Omega$ such that $D(z_0, r)$ is not contained in A.
- Then there exists $b \in D(z_0, r)$ and $b \notin A$. Thus

$$u(b) < u(a) = u(z_0)$$

• Since u is continuous, there exists s > 0 such that

$$u(z) < u(a)$$
 for $z \in D(b, s)$.

• Let $|b-z_0| = \rho < r$. Then there exists an arc on the circle $|z-z_0| = \rho$ containing b of positive length where $u(z) < u(z_0)$ and $u(z) \le u(a) = u(z_0)$ elsewhere on the circle.

Maximum principle for the continuous functions with MVP

Therefore

$$\frac{1}{2\pi} \int_0^{2\pi} u\left(z_0 + \rho e^{i\theta}\right) d\theta < u\left(z_0\right).$$

• On the other hand, we have

$$\frac{1}{2\pi} \int_0^{2\pi} u \left(z_0 + \rho e^{i\theta} \right) d\theta = u \left(z_0 \right),$$

since u satisfies MVP by the assumption. This is a contradiction.

Corollary

Let Ω be a bounded region. Assume that u is a non-constant real-valued continuous function defined on $\overline{\Omega}$ and u has MVP in Ω . Then there exists $a \in \partial \Omega$ such that

$$u(z) < u(a)$$
 for $z \in \Omega$.

Proof: Prove it!

Definition

For $0 \le r < 1$ and $0 \le \theta \le 2\pi$, the function

$$P_r(\theta) = \sum_{n = -\infty}^{\infty} r^{|n|} e^{in\theta}$$
 (*)

is called the Poisson kernel.

• We understand that $0^0 = 1$ in the sum on the right-hand side of (*) so that $P_r(\theta) = 1$ if r = 0.

Lemma

For $0 \le r < 1$ and $0 \le \theta \le 2\pi$, we have

$$P_r(\theta) = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}}\right) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$
 (**)

Proof: For $0 \le |z| < 1$, we have

$$\frac{1+z}{1-z} = (1+z)(1-z)^{-1}$$
$$= (1+z)(1+z+z^2+\cdots)$$
$$= 1+2\sum_{n=1}^{\infty} z^n.$$

Here the rearrangement of terms of the series is permissible since the series is absolutely convergent.

• By putting $z = re^{i\theta}$ with $0 \le r < 1$ above, we have

$$\frac{1+re^{i\theta}}{1-re^{i\theta}}=1+2\sum_{n=1}^{\infty}r^ne^{in\theta}.$$

Now

$$\operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right) = 1 + 2\sum_{n=1}^{\infty} r^n \cos n\theta$$

$$= 1 + \sum_{n=1}^{\infty} r^n \left(e^{in\theta} + e^{-in\theta}\right)$$

$$= 1 + \sum_{n=1}^{\infty} r^n e^{in\theta} + \sum_{n=-\infty}^{-1} r^{|n|} e^{in\theta}$$

$$= 1 + \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} r^{|n|} e^{in\theta} = P_r(\theta).$$

Further

$$\frac{1 + re^{i\theta}}{1 - re^{i\theta}} = \frac{\left(1 + re^{i\theta}\right)\left(1 - re^{-i\theta}\right)}{\left|1 - re^{i\theta}\right|^2} = \frac{1 - r^2 + 2ir\sin\theta}{\left|1 - re^{i\theta}\right|^2}$$

and

$$\left|1 - re^{i\theta}\right|^2 = 1 - 2r\cos\theta + r^2.$$

Therefore

$$P_r(\theta) = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}}\right) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

Lemma

(a) For $0 \le r < 1$, we have $P_r(\theta) > 0$ for $0 \le \theta \le 2\pi$ and $P_r(\theta)$ is periodic with period 2π . Further

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}P_r(\theta)d\theta=1.$$

(b) Let $\delta > 0$. Then

$$\lim_{r\to 1^-} P_r(\theta) = 0$$

uniformly in θ with $\delta \leq |\theta| \leq \pi$.

Proof of (a): It is clear that $P_r(\theta) > 0$ for $0 \le \theta \le 2\pi$ and periodic with period 2π , since

$$P_r(\theta) = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}}\right) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

By integrating both sides of the previous identity, we obtain

$$\int_{-\pi}^{\pi} P_r(\theta) = \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta} d\theta = \sum_{n=-\infty}^{\infty} r^{|n|} \int_{-\pi}^{\pi} e^{in\theta} d\theta = 2\pi,$$

since the series converges uniformly in θ and

$$\int_{-\pi}^{\pi} e^{in\theta} = \begin{cases} 2\pi & \text{if } n = 0, \\ 0 & \text{if } n \neq 0. \end{cases}$$

Proof of (b): Let $\delta > 0$ and 0 < r < 1.

• We may assume that $|\theta| \leq \frac{\pi}{2}$ otherwise the assertion follows immediately from the formula

$$P_r(\theta) = \operatorname{Re}\left(rac{1 + re^{i heta}}{1 - re^{i heta}}
ight) = rac{1 - r^2}{1 - 2r\cos heta + r^2}.$$

• By differentiating both sides with respect to θ in the previous formula and setting $\theta=t$, we have

$$P'_r(t) = \frac{-(1-r^2) 2r \sin t}{(1-2r \cos t + r^2)^2}.$$

Then

$$P_r'(t) < 0$$
 for $\delta \le t \le \frac{\pi}{2}$.

Thus

$$P_r(\theta) \le P_r(\delta)$$
 for $\delta \le \theta \le \frac{\pi}{2}$.

• Since $P_r(\theta) = P_r(-\theta)$, we obtain

$$P_r(\theta) \le P_r(\delta)$$
 for $\delta \le |\theta| \le \frac{\pi}{2}$.

• Since $\lim_{r\to 1^-} P_r(\delta) = 0$, we derive that $\lim_{r\to 1^-} P_r(\theta) = 0$ uniformly in $\delta \leq |\theta| \leq \frac{\pi}{2}$. This completes the proof.

Theorem

Let $a \in \mathbb{C}$, $\rho > 0$ and f be real-valued continuous function defined on the circle $C(a,\rho)$. Then there exists unique real-valued continuous function u in $\overline{D}(a,\rho)$ such that u is harmonic in $D(a,\rho)$ and

$$u(z) = f(z)$$
 for $z \in C(a, \rho)$.

Proof: We claim that there is no loss of generality in assuming that a=0 and $\rho=1$. Indeed, suppose that the assertion of the theorem is valid with a=0 and $\rho=1$. Let f be real-valued continuous function on $C(a,\rho)$.

Then we consider

$$g(z) = f(a + \rho z)$$
 for $|z| = 1$.

• We note that g is continuous on |z|=1. Then there is a real-valued continuous function v(z) in \overline{D} and harmonic in D such that

$$v(z) = g(z)$$
 for $|z| = 1$.

Let

$$u(z) = v\left(\frac{z-a}{\rho}\right)$$
 for $z \in \overline{D}(a,\rho)$.

- Then the conclusion follows, since u is a real-valued continuous function in $\overline{D}(a,\rho)$ and harmonic in $D(a,\rho)$ and such that u(z) = f(z) for $|z a| = \rho$.
- Let $M = \max\{|f(e^{i\phi})| : |\phi| \le 2\pi\}$. We prove the theorem with

$$u(re^{i\theta}) = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - \phi) f\left(e^{i\phi}\right) d\phi & \text{if } 0 \leq r < 1, 0 \leq \theta \leq 2\pi, \\ f\left(e^{i\theta}\right) & \text{if } r = 1, 0 \leq \theta \leq 2\pi. \end{cases}$$

• Let $0 \le r < 1$. We show that u is real part of an analytic function and then it is harmonic in D.

• By the formula $P_r(\theta)=\operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right)=\frac{1-r^2}{1-2r\cos\theta+r^2},$ we have

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\phi}) \operatorname{Re}\left(\frac{1 + re^{i(\theta - \phi)}}{1 - re^{i(\theta - \phi)}}\right) d\phi.$$

We observe that

$$u(re^{i\theta}) = Re(g(z))$$
 with $z = re^{i\theta}$,

where

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\phi}) \left(\frac{e^{i\phi} + z}{e^{i\phi} - z}\right) dz,$$

which is analytic in D.

- Therefore u is harmonic in D, hence it is continuous in D. Further $u\left(e^{i\theta}\right)=f\left(e^{i\theta}\right)$ for $0\leq\theta\leq2\pi$.
- Now we show that u is continuous on |z| = 1.

- We have $|u(e^{i\theta})| = |f(e^{i\theta})| \le M$ for $0 \le \theta \le 2\pi$.
- Further $f\left(e^{i\theta}\right)$ with $0 \le \theta \le 2\pi$ is uniformly continuous. Therefore for $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|u(e^{i\theta}) - u(e^{i\phi})| = |f(e^{i\theta}) - f(e^{i\phi})| < \varepsilon,$$

whenever $|\theta - \phi| \leq \delta$. Let A be an arc of the circle |z| = 1 with $e^{i\theta}$ as the centre of the arc and subtending an angle δ at the origin. Then $|\theta - \phi| \leq \delta$ whenever $e^{i\phi} \in A$.

• Thus it suffices to show that for any $e^{i\theta}$ with $0 \le \theta \le 2\pi$, we have

$$|u(re^{i\theta}) - u(e^{i\theta})| < 2\varepsilon$$
 whenever $r \to 1^-$.

We also have

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - \gamma) u(e^{i\gamma}) d\gamma$$
 for $0 \le r < 1$.

• By setting $\theta - \gamma = \phi$, we obtain for $0 \le r < 1$ that

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi+\theta}^{\pi+\theta} P_r(\phi) u(e^{i(\theta-\phi)}) d\phi = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\phi) u(e^{i(\theta-\phi)}) d\phi,$$

since the integrand is periodic with period 2π .

We further observe that

$$\begin{split} u(r\mathrm{e}^{i\theta}) - u(\mathrm{e}^{i\theta}) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\phi) \big(u(\mathrm{e}^{i(\theta-\phi)}) - u(\mathrm{e}^{i\theta}) \big) d\phi \\ &= \frac{1}{2\pi} \int_{|\phi| < \delta} P_r(\phi) \big(u(\mathrm{e}^{i(\theta-\phi)}) - u(\mathrm{e}^{i\theta}) \big) d\phi \\ &+ \frac{1}{2\pi} \int_{\pi > |\phi| > \delta} P_r(\phi) \big(u(\mathrm{e}^{i(\theta-\phi)}) - u(\mathrm{e}^{i\theta}) \big) d\phi. \end{split}$$

• Since $P_r(\phi) > 0$, the absolute value of the first integral is at most

$$\frac{\varepsilon}{2\pi}\int_{-\pi}^{\pi}P_{r}(\phi)d\phi=\varepsilon.$$

• The absolute value of the second integral is at most

$$2M \max_{\delta \le |\phi| \le \pi} P_r(\phi) < 2M \frac{\varepsilon}{2M}$$

when $r \to 1^-$, hence

$$\left|u(re^{i\theta})-u(e^{i\theta})\right|<2\varepsilon$$
 whenever $r\to 1^-$.

- It remains to show that u is unique satisfying the assertion of the theorem. Let v be a continuous function in \overline{D} such that v is harmonic in D and v(z) = f(z) for |z| = 1.
- Now we consider the function w=u-v. Then w is harmonic in D, and therefore it has (MVP) in D. Since w=0 on |z|=1, we conclude by the maximum principle, that w=0 in \overline{D} . Why?
- Hence v = u. The proof is completed.

Theorem

Let u be a real-valued continuous function with (MVP) in a region. Then u is harmonic in Ω .

Proof: Let u be a real-valued continuous function with (MVP) in Ω .

- Let $a \in \Omega$. Since Ω is open, there exists $\rho > 0$ such that $D(a, \rho) \subseteq \Omega$. It suffices to show that u is harmonic in $D(a, \rho)$. Then u is harmonic at a and the assertion follows since a is an arbitrary point in Ω .
- Since $\overline{D}(a,\rho)\subseteq\Omega$, we see that u is continuous in $\overline{D}(a,\rho)$ and it has (MVP) in $D(a,\rho)$. By the Dirichlet problem, there exists a real-valued continuous function v in $\overline{D}(a,\rho)$ such that v is harmonic in $D(a,\rho)$ and such that

$$u(z) = v(z)$$
 if $|z - a| = \rho$.

• Further v has (MVP) in Ω , since v is harmonic. Next we consider

$$g = u - v$$
 in $\overline{D}(a, \rho)$.

- We observe that g is real-valued continuous function in $\overline{D}(a, \rho)$ and it has MVP in $D(a, \rho)$.
- Further

$$g(z) = 0$$
 if $|z - a| = \rho$.

- Assume that g is not a constant function. Then g(z) < 0 in $D(a, \rho)$ by the maximum principle and g(z) > 0 in $D(a, \rho)$ by the minimum principle. This is a contradiction.
- Therefore g is a constant function c in $D(a, \rho)$. In fact c = 0 since g is continuous in $\overline{D}(a, \rho)$ and zero on $|z a| = \rho$.
- Hence u = v is harmonic in $D(a, \rho)$ as desired.