Lecture 11

Maximum principle in unbounded regions and the Phragmen–Lindelöf method

MATH 503, FALL 2025

October 13, 2025

Maximum modulus principle

Definition

Let f be defined on Ω and $a \in \Omega$. Then |f| has a **local maximum** at a if there exists $\delta > 0$ such that $D(a, \delta) \subseteq \Omega$ and $|f(a)| \ge |f(z)|$ for every $z \in D(a, \delta)$. Further, we say that |f| has no local maximum in Ω if |f| does not have local maximum at every point of Ω . Similarly, we define a **local minimum**.

Theorem

Suppose that Ω is a region and $f \in H(\Omega)$.

- (a) Then |f| has no local maximum at any point of Ω , unless f is constant.
- (b) Moreover, if the closure of Ω is compact and f is continuous on $\overline{\Omega}$, then

$$\sup_{z\in\Omega}|f(z)|\leq\sup_{z\in\partial\Omega}|f(z)|.$$

The boundedness of Ω in the previous theorem is necessary

Remark

 Thus the maximum modulus principle is not valid in unbounded open sets. We elaborate it by the following example. Let

$$\Omega = \left\{ z = x + iy : -\frac{\pi}{2} < y < \frac{\pi}{2} \right\}$$

and

$$f(z) = \exp(\exp(z)).$$

• Then Ω is unbounded and $\max_{z \in \partial \Omega} |f(z)| = 1$, since

$$\left| f\left(x \pm \frac{\pi}{2}i \right) \right| = \left| \exp\left(\exp\left(x \pm \frac{\pi}{2}i \right) \right) \right| = \left| \exp(\pm i \exp(x)) \right| = 1.$$

• On the other hand, $f(x) = e^{e^x} \to \infty$ as x tends to infinity through positive reals.

- It has already been pointed out that the maximum modulus principle need not be valid in unbounded regions.
- We will illustrate the Phragmen-Lindelöf method, which will enable to us to prove that a function is constant in a region whenever we control its growth in the region.
- We need not necessarily assume that a function is bounded in the region for concluding that it is constant as is the case of the Liouville theorem.
- For example, an entire function f(z) is constant if

$$|f(z)|\leq 1+|z|^{\frac{1}{2}}$$

for $z \in \mathbb{C}$.

Theorem

For given $a, b \in \mathbb{R}$, let

$$\Omega = \{(x + iy) : a < x < b\}.$$

Let f be continuous on $\overline{\Omega}$ and $f \in H(\Omega)$ and assume that |f(z)| < B for $z \in \Omega$ and fixed B > 0. For $a \le x \le b$, let

$$M(x) = \sup\{|f(x+iy)| : -\infty < y < \infty\}.$$

Then we have

$$(M(x))^{b-a} \le (M(a))^{b-x} (M(b))^{x-a}$$
 for $a \le x \le b$. (*)

Proof: For $\varepsilon > 0$, we consider $f + \varepsilon$ in place of f if M(a) = 0 and $f - \varepsilon$ in place of f if M(b) = 0 and let ε tend to zero to observe that there is no loss of generality in assuming that M(a) > 0 and M(b) > 0.

• For $z \in \overline{\Omega}$, we write z = x + iy with $a \le x \le b$.

Claim

Suppose that the theorem is valid for all functions f satisfying the assumptions of the theorem together with M(a) = M(b) = 1.

• We now prove the general case. Let

$$g(z) = (M(a))^{\frac{b-z}{b-a}} (M(b))^{\frac{z-a}{b-a}}.$$

ullet We observe that g(z) is analytic in $\mathbb C$ and it has no zero in $\mathbb C$. Further

$$|g(z)| = (M(a))^{\frac{b-x}{b-a}} (M(b))^{\frac{x-a}{b-a}},$$

and the exponents on the right-hand side above lie in [0,1].

Therefore

$$|g(z)| \ge \tau$$
 for $z \in \overline{\Omega}$

where

$$\tau = \min(1, M(a)) \min(1, M(b)) > 0,$$

and

$$|g(a+iy)|=M(a),$$
 and $|g(b+iy)|=M(b).$

• Now we consider $h(z) = \frac{f(z)}{g(z)}$. By the definition of h and our assumption M(a) = M(b) = 1, we see that

$$\sup_{-\infty < y < \infty} |h(a+iy)| = \sup_{-\infty < y < \infty} |h(b+iy)| = 1,$$

and

$$|h(z)| \le B\tau^{-1}$$
 for $z \in \Omega$.

ullet Therefore h satisfies the assumptions of the theorem. Hence

$$|h(x+iy)| \le 1$$
 for $a \le x \le b$.

- Using $|g(z)| = (M(a))^{\frac{b-x}{b-a}} (M(b))^{\frac{x-a}{b-a}}$ and $|h(x+iy)| \le 1$, we have $|f(x+iy)| \le |g(x+iy)| = (M(a))^{\frac{b-x}{b-a}} (M(b))^{\frac{x-a}{b-a}}$ for $a \le x \le b$, which implies (*).
- It remains to prove the theorem when M(a) = M(b) = 1, which we assume from now on and we complete the proof by showing that $M(x) \le 1$ for $a \le x \le b$.
- Since f is continuous on $\overline{\Omega}$ and |f(z)| < B for $z \in \Omega$, we see that

$$|f(z)| \leq B$$
 for $z \in \overline{\Omega}$.

• For $\varepsilon > 0$, we define

$$h_{\varepsilon}(z) = \frac{1}{1 + \varepsilon(z-a)}.$$

• For a fixed $z \in \mathbb{C}$, we see that $\lim_{\varepsilon \to 0} h_{\varepsilon}(z) = 1$.

ullet Therefore it suffices to prove for every arepsilon>0 we have

$$|f(z)h_{\varepsilon}(z)| \leq 1$$
 for $z \in \overline{\Omega}$.

• First, we estimate $h_{\varepsilon}(z)$. We observe that

$$Re(1 + \varepsilon(z - a)) \ge 1$$
 for $z \in \overline{\Omega}$.

Therefore

$$|h_{\varepsilon}(z)| \leq rac{1}{\mathsf{Re}(1+arepsilon(z-a))} \leq 1 \quad ext{ for } \quad z \in \overline{\Omega}.$$

Next

$$|\operatorname{Im}(1+\varepsilon(z-a))| \ge \varepsilon |y|$$
 for $z \in \overline{\Omega}$,

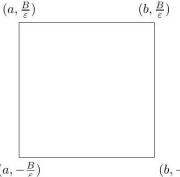
and therefore

$$|f(z)h_{\varepsilon}(z)| \leq \frac{B}{\varepsilon|y|}$$
 for $z \in \overline{\Omega}$. (B)

In particular

$$|f(z)h_{\varepsilon}(z)| \leq 1$$
 if $z \in \overline{\Omega}$ and $|\operatorname{Im}(z)| \geq \frac{B}{\varepsilon}$.

• We consider the closed set S consisting of rectangle as here



$$(a, -\frac{B}{\varepsilon}) (b, -\frac{B}{\varepsilon})$$

• Since M(a) = M(b) = 1, we see from (A) and (B) that

$$|f(z)h_{\varepsilon}(z)| \leq 1 \text{ for } z \in \partial S$$

Therefore by the maximum principle, we have

$$|f(z)h_{\varepsilon}(z)| \leq 1 \text{ for } z \in S.$$

Also by (B) we conclude that

$$|f(z)h_{\varepsilon}(z)| \leq 1 \text{ for } z \in \overline{\Omega} \backslash S.$$

Hence

$$|f(z)h_{\varepsilon}(z)| \leq 1 \text{ for } z \in \overline{\Omega}.$$

This proves the theorem.

Corollary

Suppose that the assumptions of the previous theorem are satisfied. Further suppose that f is not constant. Then

$$|f(z)| < \max(M(a), M(b))$$
 for $z \in \Omega$.

Proof: Assume that $M(a) \neq M(b)$. By the previous theorem, we have

$$M(x)^{b-a} < (\max(M(a), M(b)))^{b-a}$$
 for $a \le x \le b$.

Therefore, the assertion follows, since

$$M(x) < \max(M(a), M(b))$$
 for $a \le x \le b$.

Let M(a)=M(b). Then, by the previous theorem as above, we have $M(x)\leq M(a)$ for $a\leq x\leq b$. We fix arbitrary $z_0\in\Omega$. Then there is r>0 such that $\overline{D}(z_0,r)\subset\Omega$. By the maximum principle, we have

$$|f(z_0)| < \max_{|z-z_0|=r} |f(z)| \le M(x) \le M(a)$$
 for some $a < x < b$.

Hadamard three-circle theorem

Theorem

Let $0 < R_1 < R_2 < \infty$ and

$$A(0; R_1, R_2) = \{z \in \mathbb{C} : R_1 < |z| < R_2\}.$$

Let g(z) be continuous in $\overline{A}(0; R_1, R_2)$ and holomorphic in $A(0; R_1, R_2)$. Let

$$B(R) = \max_{|z|=R} |g(z)|$$
 for $R_1 \leq R \leq R_2$.

Then

$$(B(R))^{\log R_2 - \log R_1} \le (B(R_1))^{\log R_2 - \log R} (B(R_2))^{\log R - \log R_1}$$

for $R_1 \leq R \leq R_2$.

Hadamard three-circle theorem

Proof: Let $\Omega = \{x + iy \in \mathbb{C} : \log R_1 < x < \log R_2\}$ and let $e(z) = e^z$.

- We observe that $e(z) \in \overline{A}(0; R_1, R_2)$ for $z \in \overline{\Omega}$. Thus e is a function from $\overline{\Omega}$ into $\overline{A}(0; R_1, R_2)$. Further it is onto.
- Moreover it maps a vertical line in $\overline{\Omega}$ passing through (x,0) onto a circle $\{z \in \mathbb{C} : |z| = e^x\}$ in $\overline{A}(0; R_1, R_2)$.
- Next we write f(z) = g(e(z)) for $z \in \overline{\Omega}$.
- We observe that f is continuous in $\overline{\Omega}$ and analytic in Ω . Since $\overline{A}(0; R_1, R_2)$ is compact, we see that f is bounded on $\overline{\Omega}$.
- Thus f satisfies all the assumptions of the previous theorem. Further for $R_1 \leq R \leq R_2$, we have

$$M(\log R) = \sup\{|f(\log R + iy)| : -\infty < y < \infty\}$$
$$= \sup\{g(Re^{i\theta}) : 0 \le \theta \le 2\pi\} = B(R).$$

Hadamard three-circle theorem

• Hence we conclude from the previous theorem with $a = \log R_1$ and $b = \log R_2$ that

$$(M(\log R))^{\log R_2 - \log R_1} \leq (M(\log R_1))^{\log R_2 - \log R} \left(M(\log R_2)\right)^{\log R - \log R_1}.$$

This together with

$$M(\log R) = \sup\{|f(\log R + iy)| : -\infty < y < \infty\}$$
$$= \sup\{g\left(Re^{i\theta}\right) : 0 \le \theta \le 2\pi\} = B(R),$$

implies that

$$(B(R))^{\log R_2 - \log R_1} \le (B(R_1))^{\log R_2 - \log R} (B(R_2))^{\log R - \log R_1}$$

for
$$R_1 \leq R \leq R_2$$
.

• This completes the proof of Hadamard's theorem.

Phragmen-Lindelöf method: applications

Theorem

Suppose

$$\Omega = \left\{ x + iy \in \mathbb{C} : |y| < \frac{\pi}{2} \right\}.$$

Suppose f is continuous on $\overline{\Omega}$, and $f \in H(\Omega)$, and there are constants $\alpha < 1$, $A < \infty$, such that

$$|f(z)| < \exp\{A \exp(\alpha |x|)\}, \quad \text{whenever} \quad z = x + iy \in \Omega,$$

and

$$\left| f\left(x \pm \frac{\pi i}{2} \right) \right| \le 1$$
 for $-\infty < x < \infty$.

Then $|f(z)| \leq 1$ for all $z \in \Omega$.

• Note that the conclusion does not follow if $\alpha = 1$, as is shown by the function $\exp(\exp z)$.

Phragmen-Lindelöf method: applications

Proof: Choose $\beta > 0$ so that $\alpha < \beta < 1$. For $\varepsilon > 0$, define

$$h_{\varepsilon}(z) = \exp\left\{-\varepsilon\left(e^{\beta z} + e^{-\beta z}\right)\right\}.$$

• For $z \in \overline{\Omega}$, we have

$$\operatorname{Re}\left[e^{\beta z}+e^{-\beta z}\right]=\left(e^{\beta x}+e^{-\beta x}\right)\cos\beta y\geq\delta\left(e^{\beta x}+e^{-\beta x}\right),$$

where $\delta = \cos(\beta \pi/2) > 0$, since $|\beta| < 1$. Hence

$$|h_{arepsilon}(z)| \leq \exp\left\{-arepsilon\delta\left(e^{eta imes} + e^{-eta imes}
ight)
ight\} < 1 \quad ext{ for } \quad z \in \overline{\Omega}.$$

• It follows that $|fh_{\varepsilon}| \leq 1$ on $\partial\Omega$ and that

$$|f(z)h_{arepsilon}(z)| \leq \exp\left\{Ae^{lpha|x|} - arepsilon\delta\left(e^{eta x} + e^{-eta x}
ight)
ight\} \quad ext{ for } \quad z \in \overline{\Omega}.$$

Phragmen-Lindelöf method: applications

• Fix $\varepsilon > 0$. Since $\varepsilon \delta > 0$ and $\beta > \alpha$, we have

$$\lim_{x \to \pm \infty} \left(A e^{\alpha|x|} - \varepsilon \delta \left(e^{\beta x} + e^{-\beta x} \right) \right) = -\infty$$

• Hence there exists an x_0 so that

$$|f(z)h_{\varepsilon}(z)| \leq 1$$
 for all $x > x_0$.

- Since $|fh_{\varepsilon}| \leq 1$ on the boundary of the rectangle whose vertices are $\pm x_0 \pm (\pi i/2)$, the maximum modulus theorem shows that actually $|fh_{\varepsilon}| \leq 1$ on this rectangle.
- Thus $|fh_{\varepsilon}| < 1$ at every point of Ω , for every $\varepsilon > 0$.

$$\lim_{arepsilon o 0} h_{arepsilon}(z) = 1 \quad ext{ for every } \quad z \in \mathbb{C},$$

so we conclude that $|f(z)| \le 1$ for all $z \in \Omega$ as desired.

Lecture 11

18 / 28

Theorem

Let (X,μ) and (Y,v) be two σ -finite measure spaces. Let T be a linear operator defined on the set of all finitely simple functions on X and taking values in the set of measurable functions on Y. Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and assume that

$$||T(f)||_{L^{q_0}} \le M_0 ||f||_{L^{p_0}}, \quad and \quad ||T(f)||_{L^{q_1}} \le M_1 ||f||_{L^{p_1}},$$

for all finitely simple functions f on X. Then for all $0 < \theta < 1$ we have

$$||T(f)||_{L^q} \le M_0^{1-\theta} M_1^{\theta} ||f||_{L^p}$$
 (*)

for all finitely simple functions f on X, where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad \text{and} \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}. \tag{**}$$

Remarks

- Recall that a simple function is called finitely simple if it is supported in a set of finite measure. Finitely simple functions are dense in $L^p(X,\mu)$ for $0 , whenever <math>(X,\mu)$ is a σ -finite measure space.
- Consequently, when $p < \infty$, by density, T has a unique bounded extension from $L^p(X, \mu)$ to $L^q(Y, \nu)$ when p and q are as in (**).
- The proof will be based on the following lemma:

Lemma

Let F be analytic in the open strip $S=\{z\in\mathbb{C}:0<\text{Re }z<1\}$, continuous and bounded on its closure, such that $|F(z)|\leq B_0$ when Re z=0 and $|F(z)|\leq B_1$ when Re z=1, for some $0< B_0, B_1<\infty$. Then $|F(z)|\leq B_0^{1-\theta}B_1^{\theta}$ when $\text{Re }z=\theta$, for any $0\leq\theta\leq 1$.

Proof: Exercise!

Proof: Let

$$f = \sum_{k=1}^{m} a_k e^{i\alpha_k} \chi_{A_k}$$

be a finitely simple function on X, where $a_k > 0$, α_k are real, and A_k are pairwise disjoint subsets of X with finite measure.

We need to control

$$||T(f)||_{L^q(Y,\nu)} = \sup_{g} \left| \int_{Y} T(f)(y)g(y)d\nu(y) \right|,$$

where the supremum is taken over all finitely simple functions g on Y with $L^{q'}$ norm less than or equal to 1.

Write

$$g=\sum_{i=1}^n b_j e^{i\beta_j} \chi_{B_j},$$

where $b_j > 0$, β_j are real, and B_j are pairwise disjoint subsets of Y with finite v measure.

Let

$$P(z) = \frac{p}{p_0}(1-z) + \frac{p}{p_1}z$$
 and $Q(z) = \frac{q'}{q'_0}(1-z) + \frac{q'}{q'_1}z$.

• For z in the closed strip $\overline{S} = \{z \in \mathbb{C} : 0 \le \operatorname{Re} z \le 1\}$, define

$$f_z = \sum_{k=1}^m a_k^{P(z)} e^{i\alpha_k} \chi_{A_k}, \quad \text{and} \quad g_z = \sum_{j=1}^n b_j^{Q(z)} e^{i\beta_j} \chi_{B_j},$$

and

$$F(z) = \int_{Y} T(f_z)(y)g_z(y)dv(y)$$

• Notice that $f_{\theta} = f$ and $g_{\theta} = f$. By linearity we have

$$F(z) = \sum_{k=1}^{m} \sum_{j=1}^{n} a_k^{P(z)} b_j^{Q(z)} e^{i\alpha_k} e^{i\beta_j} \int_Y T(\chi_{A_k})(y) \chi_{B_j}(y) dv(y)$$

• Since $a_k, b_j > 0, F$ is analytic in z, and the expression

$$\int_{Y} T(\chi_{A_{k}})(y)\chi_{B_{j}}(y)dv(y)$$

is a finite constant, being an absolutely convergent integral; this is seen by Hölder's inequality with exponents q_0 and q_0' (or q_1 and q_1') and our assumption

$$\|T(f)\|_{L^{q_0}} \le M_0 \|f\|_{L^{p_0}}, \quad \text{ and } \quad \|T(f)\|_{L^{q_1}} \le M_1 \|f\|_{L^{p_1}}.$$

• By the disjointness of the sets A_k we have (even when $p_0 = \infty$)

$$||f_{it}||_{L^{p_0}} = ||f||_{L^p}^{\frac{p}{p_0}}$$

since
$$\left|a_k^{P(it)}\right| = a_k^{\frac{p}{p_0}}$$
.

ullet By the disjointness of the B_j 's we have (even when $q_0=1$)

$$\|g_{it}\|_{L^{q'_0}} = \|g\|_{L^{q'}}^{\frac{q'}{q'_0}}$$

since
$$\left|b_j^{Q(it)}\right| = b_j^{\frac{q'}{q'_0}}$$
.

• Thus Hölder's inequality and the hypothesis give

$$|F(it)| \leq ||T(f_{it})||_{L^{q_0}} ||g_{it}||_{L^{q'_0}}$$

$$\leq M_0 ||f_{it}||_{L^{p_0}} ||g_{it}||_{L^{q'_0}}$$

$$= M_0 ||f||_{L^p}^{\frac{p}{p_0}} ||g||_{L^{q'}}^{\frac{q'}{q'_0}}.$$

ullet By similar calculations, which are valid even when $p_1=\infty$ and $q_1=1$, we have

$$||f_{1+it}||_{L^{p_1}} = ||f||_{L^p}^{\frac{p}{p_1}},$$

and

$$\|g_{1+it}\|_{L^{q'_1}} = \|g\|_{L^{q'}}^{\frac{q'}{q'_1}}.$$

• Proceeding as on the previous slide we deduce that

$$|F(1+it)| \leq M_1 ||f||_{L^p}^{\frac{p}{p_1}} ||g||_{L^{q'}}^{\frac{q'}{q'}}.$$

 We observe that F is holomorphic in the open strip S and continuous on its closure. Also, F is bounded on the closed unit strip (by some constant that depends on f and g).

• Therefore, using the lemma from the previous remark, we deduce that

$$|F(z)| \leq \left(M_0 \|f\|_{L^p}^{\frac{p}{p_0}} \|g\|_{L^{q'}}^{\frac{q'}{q'_0}} \right)^{1-\theta} \left(M_1 \|f\|_{L^p}^{\frac{p}{p_1}} \|g\|_{L^{q'}}^{\frac{q'}{q'_1}} \right)^{\theta}$$
$$= M_0^{1-\theta} M_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}},$$

when $\operatorname{Re} z = \theta$. Observe that $P(\theta) = Q(\theta) = 1$ and hence

$$F(\theta) = \int_{Y} T(f)gd\nu$$

• Taking the supremum over all finitely simple functions g on Y with $L^{q'}$ norm less than or equal to one, we conclude the proof of the Riesz interpolation theorem.

Young's convolution inequality

Theorem

If $1 \le p, q, r \le \infty$ *satisfy*

$$\frac{1}{q}+1=\frac{1}{p}+\frac{1}{r}.$$

Then for all functions $f \in L^p(\mathbb{R})$ and $g \in L^r(\mathbb{R})$ we have

$$||f * g||_{L^q(\mathbb{R})} \le ||f||_{L^p(\mathbb{R})} ||g||_{L^r(\mathbb{R})},$$

where f * g is the convolution of f and g, which is defined by

$$f * g(x) = \int_{\mathbb{R}} f(x-y)g(y)dx = \int_{\mathbb{R}} f(y)g(x-y)dx.$$

Young's convolution inequality

Proof: Fix a function g in $L^r(\mathbb{R})$ and let T(f) = f * g.

- The operator T maps $L^1(\mathbb{R})$ to $L^r(\mathbb{R})$ with norm at most $\|g\|_{L^r}$, (Why?).
- The operator T also maps $L^{r'}(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$ with norm at most $\|g\|_{L^r}$, (Why?).
- The Riesz interpolation theorem gives that T maps $L^p(\mathbb{R})$ to $L^q(\mathbb{R})$ with norm at most the quantity

$$\|g\|_{L^r}^{\theta}\|g\|_{L^r}^{1-\theta} = \|g\|_{L^r},$$

where

$$\frac{1}{p} = \frac{1-\theta}{1} + \frac{\theta}{r'}$$
 and $\frac{1}{q} = \frac{1-\theta}{r} + \frac{\theta}{\infty}$.

• This completes the proof of Young's inequality.