Lecture 10

Meromorphic functions and residues

MATH 503, FALL 2025

October 9, 2025

Meromorphic functions

Definition

A function f is said to be **meromorphic** in an open set $\Omega \subseteq \mathbb{C}$ if there is a set $A \subset \Omega$ such that

- (a) A has no limit point in Ω ,
- (b) $f \in H(\Omega \setminus A)$,
- (c) f has a pole at each point of A.

Remarks

- Note that the possibility $A = \emptyset$ is not excluded. Thus every $f \in H(\Omega)$ is meromorphic in Ω .
- Note also that (a) implies that no compact subset of Ω contains infinitely many points of A, and that A is therefore at most countable. Since every open set in $\mathbb C$ is σ -compact.

Residues

Definition

Let $\Omega \subseteq \mathbb{C}$ be open. If f is a meromorphic function in Ω with the set of poles $A \subset \Omega$. If $a \in A$, and if

$$Q(z) = \sum_{k=1}^{m} c_k (z - a)^{-k}, \qquad (*)$$

is the principal part of f at a, (i.e., f-Q has a removable singularity at $a \in A$), then the number c_1 is called the **residue** of f at a, and we write

$$c_1 = \operatorname{Res}(f; a). \tag{**}$$

• If Γ is a cycle and $a \notin \Gamma^*$, then by (*) and the global Cauchy theorem, we have

$$\frac{1}{2\pi i} \int_{\Gamma} Q(z)dz = c_1 \operatorname{Ind}_{\Gamma}(a) = \operatorname{Res}(Q; a) \operatorname{Ind}_{\Gamma}(a). \tag{***}$$

Residue theorem

Theorem

Suppose f is a meromorphic function in an open set $\Omega \subseteq \mathbb{C}$. Let A be the set of points in Ω at which f has poles. If Γ is a cycle in $\Omega \setminus A$ such that

$$\operatorname{Ind}_{\Gamma}(\alpha) = 0$$
 for all $\alpha \notin \Omega$, (A)

then

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{a \in A} \operatorname{Res}(f; a) \operatorname{Ind}_{\Gamma}(a). \tag{B}$$

Proof: Let $B = \{a \in A : \operatorname{Ind}_{\Gamma}(a) \neq 0\}$. Let W be the complement of Γ^* .

- Then $Ind_{\Gamma}(z)$ is constant in each component V of W.
- If V is unbounded, or if V intersects Ω^c , then (A) implies that $\operatorname{Ind}_{\Gamma}(z) = 0$ for every $z \in V$. Since A has no limit point in Ω , we conclude that B is a finite set.

Residue theorem

- The sum in (B), though formally infinite, is therefore actually finite.
- Let a_1, \ldots, a_n be the points of B, let Q_1, \ldots, Q_n be the principal parts of f at a_1, \ldots, a_n , and put $g = f (Q_1 + \cdots + Q_n)$. (If $B = \emptyset$, a possibility which is not excluded, then g = f.)
- Set $\Omega_0 = \Omega \setminus (A \setminus B)$. Since g has removable singularities at a_1, \ldots, a_n , the global Cauchy theorem applied to the function g and the open set Ω_0 , shows that

$$\int_{\Gamma} g(z)dz = 0.$$

• Hence $f = g + \sum_{i=1}^{n} Q_i$ and

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{i=1}^{n} \frac{1}{2\pi i} \int_{\Gamma} Q_k(z) dz = \sum_{k=1}^{n} \operatorname{Res}\left(Q_k; a_k\right) \operatorname{Ind}_{\Gamma}\left(a_k\right)$$

and since f and Q_k have the same residue at a_k , we obtain (B).

Theorem

Suppose γ is a closed path in a region $\Omega \subseteq \mathbb{C}$, such that $\operatorname{Ind}_{\gamma}(\alpha) = 0$ for every $\alpha \notin \Omega$. Suppose also that $\operatorname{Ind}_{\gamma}(\alpha) = 0$ or 1 for ever $\alpha \in \Omega \setminus \gamma^*$, and let $\Omega_1 = \{\alpha \in \mathbb{C} : \operatorname{Ind}_{\gamma}(\alpha) = 1\}$. For any $f \in H(\Omega)$ let N_f be the number of zeros of f in Ω_1 , counted according to their multiplicities.

(a) (Argument principle) If $f \in H(\Omega)$ and f has no zeros on γ^* then

$$N_f = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \operatorname{Ind}_{\Gamma}(0), \tag{A}$$

where $\Gamma = f \circ \gamma$.

(b) (Rouché's theorem) If also $g \in H(\Omega)$ and

$$|f(z) - g(z)| < |f(z)|$$
 for all $z \in \gamma^*$, (B)

then $N_g = N_f$.

Remark

• Rouché's theorem says that two holomorphic functions have the same number of zeros in Ω_1 if they are close together on the boundary of Ω_1 , in the sense of condition (B).

Proof: Consider $\varphi = f'/f$, a meromorphic function in Ω .

• If $a \in \Omega$ and f has a zero of order m = m(a) at a, then we have $f(z) = (z - a)^m h(z)$, where h and 1/h are holomorphic in some neighborhood V of a. In $V \setminus \{a\}$, we have

$$\varphi(z) = \frac{f'(z)}{f(z)} = \frac{m}{z - a} + \frac{h'(z)}{h(z)},$$

since
$$f'(z) = m(z-a)^{m-1}h(z) + (z-a)^mh'(z)$$
.

Thus

$$Res(\varphi; a) = m(a).$$

• Let $A = \{a \in \Omega_1 : f(a) = 0\}$. If our assumptions about the index of γ are combined with the residue theorem one obtains

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{a \in A} \operatorname{Res}(\varphi; a) = \sum_{a \in A} m(a) = N_f.$$

• This proves one half of (A). The other half is a matter of direct computation:

$$\begin{aligned} \operatorname{Ind}_{\Gamma}(0) &= \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{\Gamma'(s)}{\Gamma(s)} ds \\ &= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f'(\gamma(s))}{f(\gamma(s))} \gamma'(s) ds = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N_{f} \end{aligned}$$

The parameter interval of γ was here taken to be $[0, 2\pi]$.

• In order to prove the Rouché theorem recall the following lemma:

Lemma

Let $\gamma_0, \gamma_1: [0,1] \to \mathbb{C}$ be closed paths. Let $\alpha \in \mathbb{C}$, if

$$|\gamma_1(s) - \gamma_0(s)| < |\alpha - \gamma_0(s)|$$
 for all $s \in I = [0, 1]$,

then $\operatorname{Ind}_{\gamma_1}(\alpha) = \operatorname{Ind}_{\gamma_0}(\alpha)$.

• Condition (B) shows that g has no zero on γ^* . Hence (A) holds with g in place of f. Put $\Gamma_0 = g \circ \gamma$. Then it follows from (B) that

$$|\Gamma(t) - \Gamma_0(t)| < |\Gamma(t)|$$
 for all $t \in [0, 1]$.

• Then by the previous lemma with $\alpha = 0$ and (A), we obtain

$$N_g = \operatorname{Ind}_{\Gamma_0}(0) = \operatorname{Ind}_{\Gamma}(0) = N_f.$$

Example

Determine the numbers of zeros of

$$z^{87} + 36z^{57} + 71z^4 + z^3 - z + 1$$

inside |z| = 1.

Solution: Take $g(z) = z^{87} + 36z^{57} + 71z^4 + z^3 - z + 1$, and $f(z) = 71z^4$.

• Then for |z| = 1, we have

$$|f(z) - g(z)| = |z^{87} + 36z^{57} + z^3 - z + 1|$$

$$\leq 1 + 36 + 1 + 1 + 1 < 71 = |f(z)|.$$

• Hence, by Rouché's theorem with $\Omega=\mathbb{C}$ and $\Omega_1=D(0,1)$ and $\gamma=e^{it}$ for $t\in[0,2\pi]$ we conclude that g(z) has four zeros inside $\partial D(0,1)$ counted according to multiplicity.

Example

We will prove that

$$\lim_{A \to \infty} \int_{-A}^{A} \frac{\sin x}{x} e^{itx} dx = \begin{cases} \pi & \text{if } |t| < 1, \\ 0 & \text{if } |t| > 1. \end{cases}$$
 (*)

The limit in (*) is $\pi/2$ when $t = \pm 1$.

Proof: Since the function

$$\frac{\sin z}{z}e^{itz}$$

is entire, its integral over [-A,A] equals that over the path Γ_A obtained by going from -A to -1 along the real axis, from -1 to 1 along the lower half of the unit circle, and from 1 to A along the real axis. This follows from Cauchy's theorem.

 \bullet Γ_A avoids the origin, and we may therefore use the identity

$$2i\sin z = e^{iz} - e^{-iz}$$

to see that

$$\int_{\Gamma_A} \frac{\sin z}{z} e^{itz} dz = \varphi_A(t+1) - \varphi_A(t-1), \tag{**}$$

where

$$\frac{1}{\pi}\varphi_{A}(s)=\frac{1}{2\pi i}\int_{\Gamma_{A}}\frac{e^{isz}}{z}dz.$$

- We now complete Γ_A to a closed path in two ways:
 - First, by the semicircle from A to -Ai to -A;
 - Secondly, by the semicircle from A to Ai to -A.
- The function e^{isz}/z has a single pole, at z=0, where its residue is 1.

 Integrating over the closed path contained in the lower half plane, it follows that

$$rac{1}{\pi} arphi_{A}(s) = rac{1}{2\pi} \int_{-\pi}^{0} \exp\left(i s A e^{i heta}\right) d heta.$$
 (L)

 Integrating over the closed path contained in the upper half plane, it follows that

$$\frac{1}{\pi}\varphi_{A}(s) = 1 - \frac{1}{2\pi} \int_{0}^{\pi} \exp\left(isAe^{i\theta}\right) d\theta. \tag{U}$$

Note that

$$\left| \exp\left(isAe^{i\theta} \right) \right| = \exp(-As\sin\theta)$$
 (5)

and that this is < 1 and tends to 0 as $A \to \infty$ if s and $\sin \theta$ have the same sign.

- The dominated convergence theorem shows therefore that the integral in (L) tends to 0 if s < 0, and the one in (U) tends to 0 if s > 0.
- Thus

$$\lim_{A \to \infty} \varphi_A(s) = egin{cases} \pi & ext{if } s > 0 \ 0 & ext{if } s < 0. \end{cases}$$

• If we use (**) and apply this bound to s = t + 1 and to s = t - 1, we obtain (*), i.e.

$$\lim_{A \to \infty} \int_{-A}^{A} \frac{\sin x}{x} e^{itx} dx = \begin{cases} \pi & \text{if } |t| < 1, \\ 0 & \text{if } |t| > 1. \end{cases}$$

- Since $\varphi_A(0) = \pi/2$, the limit above is $\pi/2$ when $t = \pm 1$.
- Note that (*) gives the Fourier transform of $(\sin x)/x$.

Example

We prove that

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi$$

by using contour integration.

Proof: Clearly $1/(1+x^2)$ is the derivative of $\arctan x$ and the conclusion readily follows. However, this is a good example to illustrate the residue calculus. So we provide a residue calculation that leads to another proof.

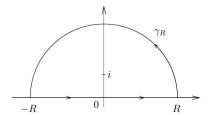
Consider the function

$$f(z)=\frac{1}{1+z^2},$$

which is holomorphic in the complex plane except for simple poles at the points i and -i.

- We choose the contour γ_R as below. The contour consists of the segment [-R,R] on the real axis and of a large half-circle centered at the origin in the upper half-plane.
- Since we may write

$$f(z) = \frac{1}{(z-i)(z+i)} = \frac{1}{2i(z-i)} - \frac{1}{2i(z+i)},$$



we see that the residue of f at i is simply 1/2i.

• Therefore, if *R* is large enough, we have

$$\int_{\gamma_R} f(z)dz = \frac{2\pi i}{2i} = \pi.$$

• If we denote by C_R^+ the large half-circle of radius R, we see that

$$\left| \int_{C_R^+} f(z) dz \right| \leq \pi R \frac{B}{R^2} \leq \frac{M}{R},$$

where we have used the fact that $|f(z)| \le B/|z|^2$ when $z \in C_R^+$ and R is large. So this integral goes to 0 as $R \to \infty$.

• Therefore, in the limit we find that

$$\int_{-\infty}^{\infty} f(x) dx = \pi$$

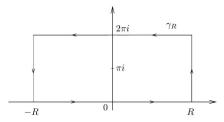
as desired.

Example

We prove that

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx = \frac{\pi}{\sin \pi a}, \quad \text{with} \quad 0 < a < 1.$$

Proof: To prove this formula, let $f(z) = e^{az}/(1+e^z)$, and consider the contour consisting of a rectangle in the upper half-plane with a side lying



on the real axis, and a parallel side on the line $Im(z) = 2\pi$.

- The only point in the rectangle γ_R where the denominator of f vanishes is $z = \pi i$.
- To compute the residue of f at that point, we argue as follows:

$$(z - \pi i)f(z) = e^{az} \frac{z - \pi i}{1 + e^z} = e^{az} \frac{z - \pi i}{e^z - e^{\pi i}}$$

On the right the inverse of a difference quotient, and in fact

$$\lim_{z \to \pi i} \frac{e^z - e^{\pi i}}{z - \pi i} = e^{\pi i} = -1$$

since e^z is its own derivative.

• Therefore, the function f has a simple pole at πi with residue

$$\operatorname{Res}(f; \pi i) = -e^{a\pi i}$$
.

As a consequence, the residue formula says that

$$\int_{\gamma_R} f = -2\pi i e^{a\pi i}.$$

We now investigate the integrals of f over each side of the rectangle.

• Let I_R denote

$$\int_{-R}^{R} f(x) dx,$$

and I the integral we wish to compute, so that $I_R \to I$ as $R \to \infty$.

 Then, it is clear that the integral of f over the top side of the rectangle (with the orientation from right to left) is

$$-e^{2\pi ia}I_R$$
.

• Finally, if $A_R = \{R + it : 0 \le t \le 2\pi\}$ denotes the vertical side on the right, then

$$\left| \int_{A_R} f \right| \leq \int_0^{2\pi} \left| \frac{e^{a(R+it)}}{1+e^{R+it}} \right| dt \leq C e^{(a-1)R}$$

and since a < 1, this integral tends to 0 as $R \to \infty$.

• Similarly, the integral over the vertical segment on the left goes to 0, since it can be bounded by Ce^{-aR} and a > 0. Therefore, we obtain

$$I - e^{2\pi i a}I = \lim_{R \to \infty} \int_{\gamma_R} f = -2\pi i e^{a\pi i}$$

from which we deduce

$$I = -2\pi i \frac{e^{a\pi i}}{1 - e^{2\pi i a}} = \frac{2\pi i}{e^{\pi i a} - e^{-\pi i a}} = \frac{\pi}{\sin \pi a}$$

and the computation is complete.

Example

Now we calculate another Fourier transform, namely

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx = \frac{1}{\cosh \pi \xi}$$

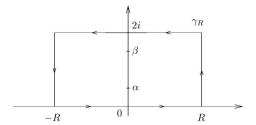
where

$$\cosh z = \frac{e^z + e^{-z}}{2}.$$

Proof: In other words, the function $1/\cosh \pi x$ is its own Fourier transform, a property also shared by $e^{-\pi x^2}$. To see this, we use a rectangle γ_R as below whose width goes to infinity, but whose height is fixed.

• For a fixed $\xi \in \mathbb{R}$, let

$$f(z) = \frac{e^{-2\pi i z \xi}}{\cosh \pi z}.$$



- Note that the denominator of f vanishes precisely when $e^{\pi z}=-e^{-\pi z}$, that is, when $e^{2\pi z}=-1$.
- In other words, the only poles of f inside the rectangle are at the points $\alpha = i/2$ and $\beta = 3i/2$.

• To find the residue of f at $\alpha = i/2$, we note that

$$(z - \alpha)f(z) = e^{-2\pi i z \xi} \frac{2(z - \alpha)}{e^{\pi z} + e^{-\pi z}}$$
$$= 2e^{-2\pi i z \xi} e^{\pi z} \frac{(z - \alpha)}{e^{2\pi z} - e^{2\pi \alpha}}$$

• We recognize on the right the reciprocal of the difference quotient for the function $e^{2\pi z}$ at $z=\alpha$. Therefore

$$\lim_{z \to \alpha} (z - \alpha) f(z) = 2e^{-2\pi i \alpha \xi} e^{\pi \alpha} \frac{1}{2\pi e^{2\pi \alpha}} = \frac{e^{\pi \xi}}{\pi i},$$

which shows that f has a simple pole at α with residue $e^{\pi\xi}/(\pi i)$.

• Similarly, we find that f has a simple pole at β with residue $-e^{3\pi\xi}/(\pi i)$.

- We dispense with the integrals of f on the vertical sides by showing that they go to zero as R tends to infinity.
- Indeed, if z = R + iy with $0 \le y \le 2$, then

$$\left|e^{-2\pi iz\xi}\right| \leq e^{4\pi |\xi|},$$

and

$$|\cosh \pi z| = \left| \frac{e^{\pi z} + e^{-\pi z}}{2} \right|$$

$$\geq \frac{1}{2} ||e^{\pi z}| - |e^{-\pi z}||$$

$$\geq \frac{1}{2} \left(e^{\pi R} - e^{-\pi R} \right) \to \infty \quad \text{as} \quad R \to \infty.$$

• This shows that the integral over the vertical segment on the right goes to 0 as $R \to \infty$. A similar argument shows that the integral of f over the vertical segment on the left also goes to 0 as $R \to \infty$.

- Finally, we see that if I denotes the integral we wish to calculate, then the integral of f over the top side of the rectangle (with the orientation from right to left) is simply $-e^{4\pi\xi}I$, where we have used the fact that $\cosh \pi \zeta$ is periodic with period 2i.
- In the limit as R tends to infinity, the residue formula gives

$$\begin{split} I - e^{4\pi\xi}I &= 2\pi i \left(\frac{e^{\pi\xi}}{\pi i} - \frac{e^{3\pi\xi}}{\pi i}\right) = -2e^{2\pi\xi} \left(e^{\pi\xi} - e^{-\pi\xi}\right) \\ \text{and since } 1 - e^{4\pi\xi} &= -e^{2\pi\xi} \left(e^{2\pi\xi} - e^{-2\pi\xi}\right), \text{ we find that} \\ I &= 2\frac{e^{\pi\xi} - e^{-\pi\xi}}{e^{2\pi\xi} - e^{-2\pi\xi}} = 2\frac{e^{\pi\xi} - e^{-\pi\xi}}{\left(e^{\pi\xi} - e^{-\pi\xi}\right)\left(e^{\pi\xi} + e^{-\pi\xi}\right)} \\ &= \frac{2}{e^{\pi\xi} + e^{-\pi\xi}} = \frac{1}{\cosh \pi\xi} \end{split}$$

as claimed.

Remark

• A similar argument actually establishes the following formula:

$$\int_{-\infty}^{\infty} e^{-2\pi i x \xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} dx = \frac{2 \sinh 2\pi a \xi}{\sinh 2\pi \xi}$$

whenever 0 < a < 1, and where $\sinh z = (e^z - e^{-z})/2$.

• We have proved above the particular case a = 1/2.